Compliance Traceability:
Privacy Policies as Software Development
Artifacts

Sebastian Zimmeck!, Peter Story?, Rafael Goldstein!, David Baraka', Shaoyan
Li%2, Yuanyuan Feng?, and Norman Sadeh?

! Department of Mathematics and Computer Science, Wesleyan University
{szimmeck,rgoldstein01,dbaraka}@vesleyan.edu
2 School of Computer Science, Carnegie Mellon University
{pstory,shaoyanl,yuanyua2}@andrew.cmu.edu, sadeh@cs.cmu.edu

Abstract. The increasing importance of data privacy is met by legis-
lators around the world with new privacy laws. However, it was shown
that many developers struggle to understand the privacy implications of
their code and the law they have to adhere to. Commercially available
privacy policy generators are intended to help developers to properly
disclose their privacy practices by guiding them through a questionnaire
and generating a privacy policy based on the answers to the presented
questions. However, state-of-the-art generators are inherently limited by
the error-prone nature of the questionnaire-based approach. They are
necessarily reliant on developers’ ability to answer questions on their
programs’ functionality accurately as well as their timeliness in updat-
ing their answers in order to reflect software changes.

We propose to mitigate the potential for compliance issues by leverag-
ing code analysis for purposes of generating privacy policies. We design
and implement a policy generator for iOS apps written in Swift that
uses three resources: (1) templates with standard language that every
policy must include to be compliant with legal provisions, for example,
the General Data Protection Regulation (GDPR), (2) policy snippets
generated from an app’s source code analysis, and (3) developer input
via a wizard-based user interface. We think that privacy transparency
can be increased and compliance issues reduced by establishing policy
generation as a native extension of the software development process.
Ultimately, the integration of policy generation into the software devel-
opment process enables the traceability of compliance requirements orig-
inating from new privacy laws and the evolving regulatory landscape.

Keywords: privacy - compliance - privacy policies - static analysis -
mobile applications - software development - i0S

Our approach is to integrate privacy analysis and policy generation in three
stages: template provisioning, code analysis, and wizard fine tuning. Figure 1
shows an overview of our approach as well as a sample analysis result from our
implementation.

2 Zimmeck et al.

1. Template Provisioning 2. Code Analysis

E.g., the GDPR requires policies to notify users of Plist Permissions and Swift APl Usage
their rights to request data access, rectification,
erasure, restriction of processing, objection of
processing, and portability (Art. 13(2)(b))

Hmm, | wonder if |
need a privacy policy-
for my app. Also, wha
should | write in there?
lam lost ...

SR— T—

Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help

3. Wizard Fine Tuning

The use of camera information was determined because of these specific lines in your app's code:

Don’t worry! | got you covered. Here
is the privacy analysis of your a

Show Detected AP and Third Party Library Calls h
You can adjust the generated privacy

Code <key>NSCameraUsageDescription</key>
File P pt plist
Line Number 77
Used USED
Usage Description

-

You can customize the recommended statement about the detected data practice using the checkboxes below.
Specific Practices Purpc
@ accesses camera data on user's device
sends camera data to the developer's server y
stores camera data on user's device

You can adjust the recommended statement below and copy it into your application’s privacy policy.

\ The app accesses camera data on your device for the pur 't ty [PLEASE DESCRIBE

Fig. 1. The three phases of our policy generation approach and a partial result output
file from our implementation. The automatic code analysis revealed that the analyzed
app is using the camera for its main functionality, a finding that can be adjusted via
the wizard’s checkboxes. A generated privacy policy statement is shown in the last line.

Various privacy laws, notably the GDPR, require mandatory disclosures that
are the same for any software. For example, developers must disclose that users
have the right to access the data they have stored on them (Art. 13(2)(b),
14(2)(c)). Those types of disclosures can be included in a template.

Generating policies from source code holds the advantage that it does not
require any additional knowledge or effort beyond writing the respective code.
It brings the policy creation task squarely into the domain of software devel-
opment and supports a mental model developers are already familiar with. In
addition, it prevents compliance issues, that is, disconnects between code and
policy. We implemented our generator for iOS apps that are written in Swift. It
can be used as a standalone Python application, but we also integrated it via
a build script into Xcode. If an app wants to make a privacy-sensitive call, the
required permission (e.g., for location access) must be included in its Info.plist.
The majority of privacy-sensitive APIs are comprised of imports, constructors,
and functions that are checked.

After the initial provisioning of the template and the analysis of the app’s
source code, the developer is presented with the generated policy whose contents
can be adjusted via a wizard.

