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ABSTRACT

Using Machine Learning to Improve Internet Privacy

Sebastian Zimmeck

Internet privacy lacks transparency, choice, quantifiability, and accountability, especially, as the

deployment of machine learning technologies becomes mainstream. However,these technologies

can be both privacy-invasive as well as privacy-protective. This dissertation advances the thesis

that machine learning can be used for purposes of improving Internet privacy. Starting with a case

study that shows how the potential of a social network to learn ethnicity and gender of its users

from geotags can be measured, various strands of machine learning technologies to further privacy

are explored. While the quantification of privacy is the subject of well-known privacy metrics,

such ask-anonymity or differential privacy, I discuss how some of those metrics can be leveraged

in tandem with machine learning algorithms for purposes of quantifying the privacy-invasiveness

of data collection practices. Further, I demonstrate how the current notice-and-choice paradigm

can be realized by automated machine learning privacy policy analysis. Theimplemented sys-

tem notifies users efficiently and accurately on applicable data practices. Further, by analyzing

software data flows users are enabled to compare actual to purported data practices and regulators

can enforce those at scale. The emerging cross-device tracking practices of ad networks, analytics

companies, and others can be supplemented by machine learning technologies as well to notify

users of privacy practices across devices and give them the choice they are entitled to by law.

Ultimately, cross-device tracking is a harbinger of the emerging Internet ofThings, in which I en-

vision intelligent personal assistants that help users navigating through theincreasing complexity

of privacy notices and choices.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The current state of Internet privacy is unsatisfactory: Internet users are often not aware of what

happens with their data when they visit websites or use mobile apps. In many cases it is not ob-

vious what types of data are collected or shared. Data practices are opaque. Further, opting out

from targeted advertising is cumbersome, and self-regulatory efforts are only beginning to take

shape. In addition, companies are frequently in doubt about their privacy obligations as well, and

regulators have difficulty enforcing existing laws. Therefore, it is the broad theme of my research

to advance privacy law on the Internet through technological solutions,more specifically, by lever-

aging machine learning (ML) technologies. In this dissertation I will sketch privacy technologies

that advance transparency for Internet users, help companies in theirefforts to develop compliant

privacy standards on which they can compete in the marketplace, and assist governmental agencies

and regulators with their privacy enforcement tasks.

1.1 ML Is the Problem. ML Is the Solution.

For the most part ML is perceived as a privacy-invading threat. The electronic traces that every

Internet user leaves behind—whether Personally Identifiable Information (PII) or metadata—can

be used to predict new information about that user (and oftentimes also about other users, such

as friends on social networks). Many free Internet services are ad-financed and often frequently

make use of ML technologies to learn more about their users and increase their revenue. How-

ever, in this work I take the opposite view and discuss the use of ML approaches for purposes
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of privacy enhancing technologies (PETs). Since many of the currentprivacy concerns are based

on the exploitation of ML technologies it is only appropriate to mitigate those by leveraging the

same technologies. In combination with other security and privacy technologies ML technologies

provide a key element for protecting privacy in the modern Internet eco-system.

1.2 The Curious Relationship between Privacy and Technological In-

novation

Privacy rights and concepts are often developed as a reaction to technological innovations. In the

19th century the right of privacy emerged against the background of the proliferating photo tech-

nology that enabled yellow press journalism. Today it is even more clear thatthe Internet and other

new technologies, which lead to a dramatically increasing availability of user data to businesses

and governments, pose new challenges for the protection of privacy[236]. Data business models

fueled by the dispersion of data evolved and are commonplace. Internet users are tracked—often

across devices—and their data is mined for purposes of contextual or targeted advertisements.

However, more and more users are engaging in technological self-help,for example, by using

ad blockers. Interestingly, Internet services are usually not enforcing their terms of services and

privacy policies against users, which departs from the practice in many types of form contracts. In

any case, law and regulations have yet to catch up to reality.

1.3 Privacy as a Right

Privacy is a fundamental right under the law in many jurisdictions. I see it asa natural right and

adopt the definition of privacy as “[t]he right of individuals to control or influence what infor-

mation related to them may be collected and stored and by whom and to whom that information

may be disclosed[234].”1 There are many more dimensions to privacy, for example, the philo-

sophical[43] or economic[22] perspective of privacy. However, what I am considering in this

dissertation is privacy as a right, which is, obviously, informed by the otheraspects as well. To

that end, the research presented here is used to advance law. Technology on its own would be

1With its focus on communication of information the definition used here stands in the tradition of Westin’s[258].
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an aimless endeavor to privacy. As it was argued for network research [156], many research ef-

forts are stymied by a combination of economic and legal issues that were notconsidered in the

research. Thus, researchers should pay attention to what is in the publicinterest, to the interests

of the parties that may implement the idea, and to whether these interests coincide[156]. In this

sense, I am addressing Internet privacy as it is rooted in the law.

The Fourth Amendment. At the outset, information privacy law in the United States is an

amalgamate of various interrelated constitutional provisions, statutory laws, and regulations[236].

Privacy as a constitutional right—per the U.S. Constitution—is generally only applicable vis-̀a-vis

the government and does not bind private actors. While the U.S. Constitutiondoes not explicitly

provide a privacy right, courts have used the Fourth Amendment’s prohibition of unreasonable

searches and seizures to construe a protective space for an individual’s reasonable expectation of

privacy[162]. In this regard, the Fourth Amendment protects an individual’s privacy ifhe or she

exhibited an actual expectation of privacy and if that expectation is recognized by society[162].2

Given the existence of a reasonable expectation of privacy, police actions and other governmental

conducts generally require a warrant.

Traditionally, each governmental action is treated as a discrete event that isevaluated indi-

vidually for its Fourth Amendment relevance. For example, in United States v. Knotts[252] the

Supreme Court evaluated the privacy implications of tracking a car during asingle trip for less

than a day as opposed to comprehensively analyzing the totality of multiple trips.More recently,

however, in United States v. Jones[249] the Supreme Court made inroads to recognize that police

surveillance and other governmental actions can become more privacy-invasive over time; even

when fully occurring in the public sphere. This latter point stands in contrast to the Court’s earlier

opinions, e.g., in Knotts[252], holding that public observations can not be reasonably thought

of as private. Under what became known as the mosaic theory intrusions can rise to the level of

violating reasonable privacy expectations on the basis of extended observations, each of which by

itself may not be sufficient to reach the threshold of a violation.

2There are other theories of how privacy is treated in the Constitution; see Griswold v. Connecticut, 381 U.S. 479, 485 (1965).
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Privacy as protection from identification and discrimination. Privacy can be understood to

protect from identification. If a person remains unrecognized or indistinguishable from one or

more other people, his or her privacy will often be sufficiently protected.However, in addition to

the identification risk privacy should also protect from discrimination. This understanding is a re-

sult of defining privacy as control over information collection, sharing,and storage. The holder of

the privacy right can prevent the processing of potentially discriminating information. The control

over this type of information is especially important as redlining—the practice ofnot providing

services or maintaining an increased pricing level in ethnic or racially diverse neighborhoods—is

re-appearing in a data-driven form. For example, the Federal Trade Commission (FTC) explored

in a study on consumer auto insurance premiums[107] that credit-based insurance scores are dis-

tributed differently among racial and ethnic groups. The study finds that while the scores seem

to derive only a relatively small amount of predictive power from their correlation with race and

ethnicity, the observed difference is likely to have an effect on the insurance premiums that these

groups pay. Different from redlining in its traditional form the discriminationappears inadver-

tently. However, as the researchers were not able to develop an alternative scoring model of the

same efficacy without accounting for the differences in scores among racial and ethnic groups, the

study highlights the difficulty of eliminating private facts from machine learning-based reasoning

without incurring a performance penalty.

The FTC study deserves a closer look for another reason: auto insurance companies are mak-

ing decisions based on predictive modeling. However, what is the meaning of predictions in terms

of legal categories? They are not facts, but rather probabilities (different, for example, from the

decisions to offer motorists insurance at a certain price point, which are indeed facts). At the

outset there are various areas of law that arguably support probabilistic reasoning. For example,

the Supreme Court’s interpretation of evidentiary standards[248] are a seemingly good fit when

Justice Harlan states that “[a]lthough the phrases ’preponderance ofthe evidence’ and ’proof be-

yond a reasonable doubt’ are quantitatively imprecise, they do communicate tothe finder of fact

different notions concerning the degree of confidence he is expectedto have in the correctness of

his factual conclusions.” Thus, while the Court has eschewed to embrace bright lines there seem

to be quantitative conceptions that inform the interpretation of evidentiary standards. However,

it should also be noted that a purely mechanical quantification without considering the plausibil-
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ity of evidence, for example, in the sense of a “plausible cause”[53], would shortcut the Fourth

Amendment.

Limits to privacy. The privacy right is not without limits.3 In particular, the Stored Communi-

cations Act, which is part of the Electronic Communications Privacy Act, provides the conditions

under which governmental agencies can access electronic data held at private organizations. In 18

U.S.C.§2703(a), (b) it is stated that service providers have to disclose to the government content

of electronic communications held in an account for more than 180 days under a subpoena or

court order. Only if the communication was stored for fewer than 180 daysdoes the law require

a warrant from the government. The distinction is important because issuance of a warrant de-

mands probable cause while the government can obtain a subpoena or court order under the lower

standard of establishing reasonable grounds for the belief that the content of a searched item is

relevant for an investigation[141]. However, as various governmental agencies in the past tried to

obtain access to data stored at private Internet companies, the latter became increasingly reluctant

to reveal the data of their users. Also, the increased use of encryption technologies in their prod-

ucts makes it harder for the government to gain access to the underlying unencrypted data even if

the legal requirements are met and the companies are willing to help. Striking the right balance

between individuals’ privacy rights and law enforcement is a challengingand unresolved task.

Privacy protection vis-à-vis private organizations. The Fourth Amendment is generally not

applicable in the relationship between private entities. Rather, to a substantialextent privacy law

is permeated by the goal of consumer protection and based on the notice andchoice principle[70].

Internet users are notified about how their data are processed and they can use opt outs and other

choice mechanisms to craft their relationship to the data processor. In this regard, Internet users’

privacy is often dependent on privacy policies (in addition there are a few narrow federal laws, state

laws, and regulations, for example, covering childrens’ privacy rights). Typically, the provider of

a web service posts a privacy policy on its website, which a user accepts by using the site. Thus,

privacy policies are fundamental building blocks of web privacy, and the FTC as well as other reg-

ulators aim to enforce companies’ violations of the promises contained in the policies rigorously.

3There are many more limitations not discussed here. Particularly, European law in form of its General Data Protection Regula-

tions[101], which includes the notorious right to be forgotten[265], is exacting.
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However, many users do not read privacy policies and those who do findthem oftentimes hard

to understand[191]. The resulting information asymmetry leaves users uninformed about their

privacy choices[191], can lead to market failure[188], and ultimately casts doubt on the notice

and choice principle as a whole. Thus, while in theory the notice and choice principle is sound,

there remain many practical challenges.

1.4 Transparency, Choice, Quantifiability, Accountability

Privacy as a right guarantees individuality and liberty. To effect thesevalues my research is or-

ganized along four privacy principles: transparency, choice, quantifiability, and accountability. In

the new data economy, as it is sometimes dubbed[17], users are assumed to be aware of their pri-

vacy rights through privacy policies. However, as McDonald et al. have shown[191], the current

notice and choice approach is challenging. Various attempts to mitigate the lack oftransparency,

most notably P3P[75], remained unsuccessful. Consequently, this dissertations proposes theidea

of using ML classifiers to automatically analyze privacy policy text and showusers strongly con-

densed policy terms that can be more easily grasped (Chapter 5). However, giving users’ choice

is also a field for further improvement. Current mechanisms, for example, for opting out from re-

ceiving targeted advertisement, requires substantial investment of time and nearly expert privacy

knowledge.

Beyond deficiencies in privacy transparency and choice recent findings suggest a lack of ac-

countability as well. For example, a recent study detected more than 256 iOS apps in violation of

Apple’s App Store privacy policy due to the disclosure of device serial numbers and other data to

third party library developers[132]. This finding suggests a deficiency in terms of accountability.

However, the detection of those non-compliant apps appears to be a far cry from achieving sys-

tematic accountability of apps’ data practices on the large scale. Furthermore, even in cases where

privacy violations can be identified, it is unclear how their invasiveness can be measured. How

can their harm be quantified? When is enough enough[46]? As I will show, this question can be

addressed using ML methodology (Chapter 3).

The four principles—transparency, choice, quantifiability, and accountability—bear a strong

resemblance to various sets of Fair Information Practice Principles (FIPPs) [127]. However, they
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are more abstract and leave more freedom for individual lawmaking and agreement between users

and Internet services. For example, in my opinion, there is no need for limitingthe use of data to

the purpose they were originally collected for; a limitation that is included in some FIPPs. These

purpose limitations should be made part of individual laws or agreements. However, declaring

such a blanket statement generally applicable as part of a set of privacy principles appears to be

overbearing.

1.5 Practical Considerations

There are various practical considerations that should be consideredwhen designing PETs for

Internet users. First, in the same way as security is a secondary task[126], privacy appears to be a

secondary task as well. Generally, users are not interested in spendinginordinate amounts of time

fiddling with privacy settings or reading privacy policies. Thus, privacy technologies have to be as

fast, automated, and comprehensible as possible. To some extent privacyis a question of usability

and human-computer interaction; topics that this dissertation will, however, not discuss in detail.

Second, the classical security threat models[45] appear a poor fit for the types of Internet

privacy questions examined here. After all, users can agree to trade privacy for services and enter

into a contractual relationship with Internet services. Thus, as opposedto the assumption of an

unlawful attack, privacy is a subject matter that is often based on lawful contractual relationships

(and legal proceedings if the government is involved). Accordingly, assuming unlawful breaches

of privacy by importing security threat models would oftentimes result in ineptqualifications of

privacy relationships.

Third, there is a substantial disconnect between the privacy ideal envisioned by the law and the

actual privacy standards that users are experiencing. For example,what is written in privacy poli-

cies is often not an accurate description of the data practices occurring inreality. It was shown[44]

that software developers are often unaware of their obligations and do not spend sufficient time to

bring their software in conformity with the law (often unintentionally). Therefore, I intend to ad-

dress the disconnect between written and actually occurring privacy practices and offer a solution

for regulators as well as for software developers (Chapter 6).
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1.6 Thesis: The Use of ML Technologies Is Essential for Improving

Internet Privacy

The contributions of this dissertation provide support for the thesis that MLtechnologies are an

essential element for advancing privacy on the Internet. First, in a casestudy I will demonstrate

how ML can be used to detect a social network’s potential to infer ethnicity and gender from its

users’ location data (Chapter 3). Under the privacy right, as understood here in the sense of control

over information processing, an individual has control over whether others are able to determine

his or her ethnicity or gender. Beyond the online inferences the demonstrated techniques can also

be used to survey potential instances of discrimination and segregation in thereal world. As such

they illustrate that a person’s online and offline privacy are often intertwined.

I will continue to show how ML can be leveraged for purposes of quantifying whether a privacy

violation, which is understood to mean the non-compliance with a given privacy definition, exists

(Chapter 4). Specifically, I will show how ML algorithms can be operationalized in the mosaic

theory via existing privacy metrics, such ask–anonymity[241]. As the mosaic theory recognizes

the occurrence of privacy violations on the basis of extended periods of observation, each of which

by itself may not be sufficient to reach the threshold of such violation, ML provides the basis for

the argument for why that is the case: the prolonged observation and consolidation of data can

lead to insights that go beyond the sum of the individual observations.

Further, in order to improve privacy transparency I describe a systemand its implementation to

automatically analyze privacy policies (Chapter 5). Based on ML algorithms the system analyzes

policy text and returns a label with the most important information allowing Internet users to gain

a fast understanding of essential policy terms. In this regard, it should be noted that the automatic

processing is not perfect, and mistakes can happen simply due to the natureof the approach being

based on ML techniques. Making privacy policies more accessible by automatically analyzing the

policy text (even it occasional mistakes) and extracting the most salient information gives users the

opportunity to quickly grasp essential data practices and enhances the prevailing model of notice

and choice.

The policy analysis results can be compared to actually occurring practiceson websites, mo-

bile apps or other software. I will illustrate a system implementation and its results for a large-



CHAPTER 1. INTRODUCTION 9

scale study of Android apps and their corresponding policies (Chapter 6). This type of comparison

enables regulators to hold software publishers accountable for their privacy practices. In fact, a

custom-tailored version of the system is implemented for the California Department of Justice.

The system is in the process of being evaluated as a privacy enforcementtool for the apps on the

Google Play store. However, the demonstrated techniques can be also used by software developers

to avoid potential privacy inconsistencies before deploying any software in the first place.

I will finally explore a rarely investigated but increasingly common practice: cross-device

tracking, that is, the comprehensive tracking of Internet users on multipledevices (Chapter 7).4

Cross-device tracking is a person-centric tracking approach as opposed to the traditional tracking

of individual devices or browsers. Recognizing cross-device tracking and alerting users accord-

ingly is becoming increasingly important since there is a surge of Internet services making use of

this practice. As a recent FTC workshop revealed a fundamental lack ofresearch on the privacy

implications of cross-device tracking[115] the explorations presented here are aimed at under-

standing the phenomenon at a fundamental level. Thus, among others, I willexplore the reach of

tracking companies and the methodologies they use. These inquiries are a necessary first step for

developing efficient privacy protections in the cross-device space.

4As data is accumulated over time the methodology introduced in Chapter 4 may be used to quantify whether someone’s privacy

right is violated.
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Chapter 2

Related Work

Different strands of related work motivate my research, most notably previous studies on the ML

analysis of privacy policies, program analysis of apps, human-computer interaction, crowdsourc-

ing, and web tracking.

2.1 ML Privacy Policy Analysis

A core concept for notifying users of privacy practices on the Internet and obtaining their agree-

ment to these is notice and choice. Through privacy policies and other notifications users are

alerted of applicable practices. However, as McDonald et al. have shown [191], very few users

read those notifications. Thus, helping users’ understanding their privacy choices is a major mo-

tivation of my work. Initial work on automatic privacy policy analysis focused on making pri-

vacy policies machine-readable. That way a browser or other user agent could read the poli-

cies and alert the user of good and bad privacy practices. Reidenberg [223] suggested early

on that web services should represent their policies in the Platform for Internet Content Se-

lection (PICS) format[15]. This and similar suggestions lead to the development of P3P[71;

75], which provided a machine-readable language for specifying privacypolicies and displaying

their content to users[76]. To that end, the designers of P3P implemented various end users tools,

such as Privacy Bird[72], a browser extension for Microsoft’s Internet Explorer that notifies users

of the privacy practices of a web service whose site they visit, and Privacy Bird Search[57], a

P3P-enabled search engine that returns privacy policy information alongside search results.
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The development of P3P was complemented by various other languages andtools. Of partic-

ular relevance was A P3P Preference Privacy Exchange Language(APPEL)[74], which enabled

users to express their privacy preferences vis-à-vis web services. APPEL was further extended in

the XPath project[26] and inspired the User Privacy Policy (UPP) language[27] for use in so-

cial networks. For industry use, the Platform for Enterprise Privacy Practices (E-P3P)[161] was

developed allowing service providers to formulate, supervise, and enforce privacy policies. Sim-

ilar languages and frameworks are the Enterprise Privacy AuthorizationLanguage (EPAL)[39],

the SPARCLE Policy Workbench[54; 55], Jeeves[266], and XACML [18]. However, despite

all efforts the adoption rate of P3P policies among web services remained low[16], and the P3P

working group was closed in 2006 due to lack of industry participation[70].

I believe, instead of creating new machine-readable privacy policy formats it is more effective

to use what is already there—privacy policies in natural language. As ofnow, Massey et al.[189]

provided the most extensive evaluation of 2,061 of such policies, however, not focusing on their

legal analysis but rather their readability and suitability for identifying privacy protections and

vulnerabilities from a requirements engineering perspective. In addition,Hoke et al.[145] studied

the compliance of 75 policies with self-regulatory requirements, and Cranoret al. [73] analyzed

structured privacy notice forms of financial institutions identifying multiple instances of opt out

practices that appear to be in violation of financial industry laws.

Different from previous studies I analyze policies automatically, on a largescale, from a legal

perspective, and not limited to the financial industry. For analyzing policy content I rely on the

flexibility of ML classifiers. My work is informed by the study of Costante et al.,who presented

a completeness classifier to determine which data practice categories are included in a privacy

policy [69] and proposed rule-based techniques to extract data collection practices[68]. However,

I am going beyond these works in terms of both breadth and depth. The analysis here covers a

much larger policy corpus and focuses on legal questions that have notyet been automatically an-

alyzed. Different from many existing works that focus on pre-processing of policies, e.g. by using

topic modeling[65; 238] and sequence alignment[182; 219] to identify similar policy sections

and paragraphs, I am interested in analyzing policy content.
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2.2 Legal Information Extraction

Given the task of analyzing natural language policies, the question becomes how salient infor-

mation can be extracted from unordered policy texts. While most works in legal information

extraction relate to domains other than privacy, they still provide some guidance. For example,

Westerhout et al.[256; 257] had success in combining a rule-based classifier with an ML classifier

to identify legal definitions. In another line of work de Maat et al.[81; 82] aimed at distinguish-

ing statutory provisions according to types (such as procedural rules or appendices) and patterns

(such as definitions, rights, or penal provisions). They concluded that it was unnecessary to em-

ploy something more complex than a simple pattern recognizer[81; 82]. Other tasks focused on

the extraction of information from statutory and regulatory laws[52; 51], the detection of legal

arguments[194], or the identification of case law sections[173; 240].

There are some works in the privacy policy domain, most notably, as part of the Usable Privacy

Policy Project[13; 230]. In particular, Ammar et al. presented a pilot study[32] with a focus on

classifying provisions for the disclosure of information to law enforcementofficials and users’

rights to terminate their accounts. They concluded the feasibility of natural language analysis

in the privacy policy domain in general. Wilson et al. discussed the creation and analysis of a

privacy policy corpus[260]. In general, the discussed works confirm the suitability of rule and ML

classifiers in the privacy policy domain. However, neither provides a comprehensive concept, nor

addresses, for example, how to make use of crowdsourcing results. The latter point is especially

important because, as shown in Section 5.3, automatic policy classification on its own is inherently

limited. None of the previous works relieves the user from actually reading the analyzed policy.

In contrast, it is the goal of the work in this dissertation to provide users with aprivacy policy

summary in lieu of the full policy. I want to extract from a policy essential provisions, make it

more comprehensible, provide guidance on the analyzed practices, and give an overall evaluation

of its privacy level.

2.3 Privacy Policy Crowdsourcing

There are various crowdsourcing repositories where crowd contributors evaluate the content of

privacy policies and submit their results into a centralized collection for publication on the Web.
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Sometimes policies are also graded. Among those repositories are ToS;DR[10], privacychoice[8],

TOSBack[11], and TOSBack2[12]. Crowdsourcing has the advantage that it combines the knowl-

edge of a large number of contributors, which, in principle, can lead to a much more nuanced

interpretation of ambiguous policy provisions than current classifiers could provide. However, all

crowdsourcing approaches suffer from a lack of participation and, consequently, do not scale well.

While the analysis results of the most popular websites may be available, those for many lesser

known sites are not. In addition, some repositories only provide the possibilityto look up the

results on the web without offering convenient user access, for example, by means of a browser

extension or other software.

The use of supervised ML techniques, as used suggested here, requires ground-truth. To sup-

port the development of these techniques crowdsourcing has been proposed as a viable approach

for gathering rich annotations from unstructured privacy policies[230; 261]. While crowdsourc-

ing poses challenges due to the policies’ complexity[224], assigning annotation tasks to experts

and setting stringent agreement thresholds and evaluation criteria[261] can in fact lead to reliable

policy annotations. However, as it is a recurring problem that privacy policy annotations grapple

with low inter-annotator agreement[224], I am introducing a measure for analyzing their reliabil-

ity based on the notion that high annotator disagreement does not principallyinhibit the use of the

annotations for ML purposes as long as the disagreement is not systematic.

2.4 Privacy Requirement Inconsistencies

Given the inquiry into privacy policy content, I believe, it is a worthwhile taskto check the extent

to which policies align with actual data practices. In this regard, I find it particularly insightful to

explore whether mobile apps’ practices are consistent with the disclosuresmade in their policies

and selected requirements from other laws. The legal dimension is an important one that gives

meaning to the app analysis results. For example, for apps that do not provide location services the

transfer of location data may appear egregious. Yet, a transfer might be permissible if adequately

disclosed in a privacy policy. Only few efforts have attempted to combine code analysis of mobile

apps with the analysis of privacy policies. I am seeking to fill this void by identifying privacy

requirement inconsistencies connecting the analyses of apps, privacypolicies, and privacy laws.
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In terms of previous work, various studies, e.g.,[268; 267], made inroads on creating privacy

documentation or even privacy policies from program code. Other works focused on comparing

program behavior with non-legal texts. For example, Huang et al. proposed AsDroid to identify

contradictions between apps and user interface texts[150]. Kong et al. introduced a system to

infer security and privacy related app behavior from user reviews[171]. Gorla et al.[139] used

unsupervised anomaly detection techniques to analyze app store descriptions for outliers, and

Watanabe et al.[255] used keyword-based binary classifiers to determine whether a resource that

an app accesses (e.g., location) is mentioned in the app’s description.

Different from most previous studies I analyze app behavior for compliance with privacy re-

quirements derived from their privacy policies and selected laws. A step inthis direction was

provided by Bhoraskar et al., who found that 80% of ads displayed in apps targeted at children

linked to pages that attempt to collect personal information in violation of the law[47]. The closest

results to the effort here were presented by Enck et al.[96] and Slavin et al.[235]. In an analysis

of 20 apps Enck et al. found a total of 24 potential privacy law violations caused by transmission

of phone data, device identifiers, or location data. Slavin et al. proposeda system to help software

developers detect potential privacy policy violations. Based on mappingsof 76 policy phrases to

Android API calls they discovered 341 such potential violations in 477 apps.

While my approach is inspired by TaintDroid[96] and Slavin et al.’s study[235], I move

beyond their contributions. First, the privacy requirements here cover privacy questions previously

not examined. Notably, different from Slavin et al., I address whether an app needs a policy and

analyze the policy’s own compliance (i.e., whether it describes how users are informed of policy

changes and how they can access, edit, and delete data). I also analyzethe collection and sharing

of contact information. Second, TaintDroid, is not intended to have app store wide scale. Third,

TaintDroid and Slavin et al.’s approaches do not neatly match to legal categories. They do not

distinguish between first and third party practices[96; 235], do not account for negative policy

statements (i.e., that an app doesnot collect certain data, as, for example, in the Snapchat policy,

and base their analysis on a dichotomy of strong and weak violations[235] unknown to the law.

Fourth, I introduce techniques that achieve a mean accuracy of 0.94 anda failure rate of 0.4%,

which improve over the closest comparable results of 0.8 and 21%[235], respectively.



CHAPTER 2. RELATED WORK 15

2.5 Mobile App Analysis

As far as the analysis on the mobile app side is concerned, different fromthe closest related

works [96; 235], my analysis of Android apps reflects the fundamental distinction between first

and third party data practices. Both have to be analyzed independently as one may be allowed

while the other may not. First and third parties have separate legal relationships to a user of an

app. Among the third parties, ad and analytics libraries are of particular importance. Gibler et

al. found that ad libraries were responsible for 65% of the identified data sharing with the top

four accounting for 43%[129]. Similarly, Demetriou et al.[85] explored their potential reach and

Grace et al.[140] their security and privacy risks. They find that the most popular libraries have

the biggest impact on sharing of user data, and, consequently, the analysis of sharing practices

presented here focuses on those as well. In fact, 75% of apps’ locationrequests serve the purpose

of sharing it with ad networks[180].

One of my contributions lies in the extension of various app analysis techniques to achieve

a meaningful analysis of apps’ compliance with privacy requirements derived from their privacy

policies and selected laws. The core functionality of the app analyzer in this dissertation is built on

Androguard[34], a static analysis tool. In order to identify the recipients of data the system creates

a call graph as described by Gibler et al.[129; 255] and uses PScout[41], which is comparable to

Stowaway[121], to check whether an app has the required permissions for making a certainAPI

call or allowing a library to make such. My work takes further ideas from FlowDroid [38], which

targeted the sharing of sensitive data, its refinement in DroidSafe[138], and the ded decompiler for

Android Application Packages (APKs)[97]. However, neither of the previous works is intended

for large-scale privacy requirement analysis.

2.6 Cross-device Tracking

ML techniques are playing a central role in cross-device tracking. To explore the space Draw-

bridge[2], an ad network specializing in cross-device tracking, hosted the ICDM 2015: Draw-

bridge Cross-Device Connections competition asking researchers to leverage machine learning

techniques to correlate devices to users[89]. Competition participants were given access to an

anonymized proprietary dataset to train and test their features and algorithms. The competition



CHAPTER 2. RELATED WORK 16

resulted in eight short papers by some of the most successful participants [169; 176; 196; 33; 62;

163; 232; 254]. Different from the discussion in this study, these papers took the perspective of

an ad network and focused exclusively on improving machine learning techniques and achieving

a high F score. While these point are also part of my investigation, I am much more interested in

the privacy of cross-device tracking.

The first place solution in the Drawbridge competition provided by Walthers[254], which

reached an F-0.5 score of 0.9, is in many ways representative for the techniques used in the com-

petition. As other participants’ solutions[169; 176; 62], it identified IP addresses that devices of

the same user were connected to as the most important feature. Intuitively, as conjectured by Cao et

al. [62], devices with similar IP footprints are more likely to be used by the same individual. Thus,

simply relying on IP history can already lead to an F-0.5 score of 0.86[62]. However, various stud-

ies found that not all IP addresses are equally meaningful. In particular, because the same cellular

IP addresses occur for many devices of different users they harbor less identifying potential[254;

163].

While the Drawbridge competition was about the correlation of different user devices, it did

not address the purpose of the correlation: the identification of demographics, interests, and other

monetizable information of the person behind the devices. Various studies exist on this topic,

however, not in the context of cross-device tracking. For example, deMontjoye et al.[83] have

shown that to some extent personality can be predicted from standard calldetail records (CDRs),

e.g., metadata about received and placed phone calls and text messages.A little closer to the effort

here, Hu et al.[148] analyzed the problem of predicting Internet users’ gender and age based on

their browsing behaviors. They achieved an F-1 score of 0.8 for predicting gender and a score

of 0.6 for categorizing users into five different age groups. In orderto defend against these types

of inference attacks while still allowing personalized advertisement Mor et al. [195] proposed

Bloom cookies that encode a user’s profile in a compact and privacy-preserving way. Recognizing

the importance of IP addresses for identifying users they aim for unlinkability of all queries from

the same IP. In this regard, I will explore the effect of linking devices through IP addresses on the

accuracy of learning.
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2.7 Web Tracking

Much research was published on web tracking ofindividual devices. However, to the best of my

knowledge, none of the existing efforts discusses trackingacross devices. Such tracking is notably

different from traditional tracking that is focused on one device or browser. To track web users

across devices companies’ need first to distinguish different browserinstances on the Internet.

Commonly, HTTP cookies are used for this purpose. Since HTTP cookies and other traditional

trackers maintain state they are widely used to track individual browsers. As Englehardt et al.[99]

point out, if two websites are embedding the same tracker an adversary canlink visits to those

pages from the same browser instance even if the user’s IP address varies. In their study they

find that an adversary with the ability to passively observe web traffic on the Internet backbone

can reconstruct up to 73% of a typical user’s browsing history. They obtained their results using

their web measurement platform OpenWPM[98], which they introduced in conjunction with a

large-scale measurement of web tracking based on a crawl of a million websites.

If a browser does not accept HTTP or other cookies, it can still be tracked via browser fin-

gerprinting, which was pointed out by Eckersley et al.[95] and extensively surveyed by Lerner

et al. [178]. Web-based device fingerprinting is the process of collecting sufficient information

through the browser to perform stateless device identification[21]. Such fingerprinting is also

used to re-identify a browser in case cookies have been deleted. It canalso be based on sensors as

Das et al.[79] showed. With their FPDetective Acar et al.[21] conducted a large-scale study of

web-based device fingerprinting. Panchenko et al.[208] and Hayes and Danezis[143] discussed

fingerprinting attacks; Cai et al.[58; 59] explored defenses. Juarez et al[157] showed that user’s

browsing habits and other environment variables have a significant impacton the efficacy of the

web fingerprinting attack. In this regard, three advanced web tracking mechanisms—canvas fin-

gerprinting, evercookies, and use of cookie syncing—were exploredby Acar et al.[20]. From a

legal perspective it would be interesting to research the extent to which thegovernment could use

web tracking technologies—whether based on fingerprinting or traditional mechanisms—to track

users without a warrant across government sites. Here I am now exploring the extent to which

fingerprinting plays a role in cross-device tracking, particularly, examining the BlueCava library,

which was a prominent part of Nikiforakis et al.’s work[201] on investigating the practices of

three popular browser-fingerprinting companies.
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In a very interesting contribution Olejnik et al.[202] reported a significant rate of stability

in browser history footprints. They posit that it is not simple to change one’s browsing habit.

Their results show that for 69% of users the browsing history is unique and that users for whom

they could detect at least four visited websites were uniquely identifiable bytheir histories in 97%

of cases. They ponder: if web browsing patterns were unique for a given user, history analysis

could potentially identify the same user across multiple browsers and devices.I want to address

this question. There are also other differences among users that could single them out. Based

on usage traces from 255 users of two different smartphone platforms with 7-28 weeks of data

per user Falaki et al.[105] found, for example, that the mean number of interactions per day for

a user varies from 10 to 200, that the mean interaction length varies from 10to 250 seconds,

and that the number of applications used varies from 10 to 90. This is especially noteworthy as

Eubank et al.[100] found that the top third-party domains across different categories of devices

are substantially similar. They found only few mobile-specific ad networks leading to very similar

lists of top desktop and mobile third-party trackers.

2.8 Human-Computer Interaction

While I am not aware of any web tracking study investigating how users aretracked across devices,

there are various studies on human-computer interaction that provide valuable clues how it might

work. The goal of these studies is to improve website navigation, browser prediction of user

destinations, and search result relevance for search engines[23]. To that end, some of these studies

focus on website revisit patterns highlighting the identifying potential of suchrevisits. Tauscher

and Greenberg[242] found that 58% of visited websites of a user constitute revisits. People tend to

access only a few pages frequently and browse in small clusters of related pages. Adar et al’s[23]

analysis reveals various patterns of revisit, each with unique behavioral,content, and structural

characteristics. They find that a five week period is sufficient to capturea wide variety of revisit

patterns, although, it lacks seasonal or yearly patterns.

Some studies took a closer look at website revisits across devices. Tossellet al. [244] were

able to detect that revisits occurred very infrequently with approximately 25% of URLs revisited

by each user. They further find that, compared to desktops, mobile browsers are accessed less
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frequently, for shorter durations, and to visit fewer pages. Users’ seem to rely on apps instead.

Different from websites, apps have a revisit rate of 97.1% driven by ahigh number of visits to

the five most frequently accessed apps. It appears that mobile web use ismore concentrated and

narrow than its desktop counterpart. Indeed, Kamvar et al.’s study[159] confirms this conjecture

for the use of web search. However, interestingly enough search behavior on high-end phones

resembles computer-based search behavior more than mobile search behavior.

In their quest for improving the sharing of bookmarks, URLs, and other web information

between devices Kane et al.[160] found that users tend to visit many of the same domains on both

their mobile device and desktop. Specifically, they found that a median of 75.4% of the domains

viewed on the phone were also viewed on the desktop, and a median of 13.1%of the domains

viewed on the desktop were also viewed on the phone. Despite the differingbrowsing habits across

devices, particularly, the higher number of web sites visited on desktops, they conclude that users’

web browsing activities are similar across devices. However, users do not use all of their devices

in the same way but rather assign them different roles, as Dearman and Pierce [84] found. They

also point out that associating a user’s activities with a particular device is problematic because

many activities span multiple devices.

Human-computer interaction also plays a role for the notifying users on privacy practices, no-

tably, the automatic privacy policy analysis. However, whether the analysisof a privacy policy

is based on crowdsourcing or automatic classifications, in order to notify users of the applicable

privacy practices it is not enough to analyze policy content, but rather the results must also be

presented in a comprehensible, preferably, standardized format[199]. In this sense, usable pri-

vacy is orthogonal to the other related areas: no matter how the policies are analyzed, a concise,

user-friendly notification is always desirable. In particular, privacy labels may help to succinctly

display privacy practices[164; 165; 167; 221; 222]. Also, privacy icons, such as those proposed

by PrimeLife [123; 146], KnowPrivacy[16], and the Privacy Icons project[7], can provide vi-

sual clues to users. However, care must be taken that the meaning of the icons is clear to the

users[146]. As of today there is no standard set of privacy labels, and, consequently, their recog-

nizability remains problematic.



CHAPTER 2. RELATED WORK 20

2.9 Quantifying Privacy

Various efforts were undertaken to measure privacy. While most of the introduced metrics were

developed to quantify privacy in databases, they are also used for anonymizing users in web ser-

vices and hiding demographic characteristics or other traits of a person. However, different from

the approach I am taking here, all existing methods for quantifying privacy, most notably, differ-

ential privacy[93] andk–anonymity[241], assume an understanding of privacy that is void of ML.

Their underlying assumption is that only thedirect identification of a person or his or her char-

acteristics is privacy-relevant. In other words, the privacy of an individual is considered violated

only based on firsthand leakage of information. However, this view of privacy is incomplete since

the ability tolearnsensitive information from apparently innocuous information is a surreptitious

and sensitive action that can be equally privacy-invasive.

Shortly after it was introduced by Sweeny[241] k-anonymity became the starting point for a

whole family of privacy metrics that built upon and extended it. Similar tok-anonymity,l-diversity

was originally proposed to protect the identity of individuals in databases[184]. It is founded on

the observation that whilek-anonymity prevents the disclosure of identities, it does not prevent the

disclosure of sensitive attributes, such as height, eye color, ethnicity, orother quasi-identifiers of a

person[184]. Beyondk-anonymity,l-diversity and its progeny, one of the most influential recent

privacy metrics is differential privacy, which was introduced by Dwork[94]. Comparable tok-

anonymity andl-diversity differential privacy does not take into account that undisclosed sensitive

information can be learned from other information that is available. While shy from a complete

solution to this problem, I will address the expansion of existing privacy metrics by incorporating

the ML element.
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Chapter 3

Case Study: Detecting Potential

Ethnicity and Gender Inferences

In the following case study I will show how ML can be used to identify an Internet service’s poten-

tial to infer ethnicity and gender from user-submitted data and how the collected datasets can be

used to survey real-world segregation and potential discrimination.1 As the inference of ethnicity

and gender can have discriminatory impact it is important to provide users withtransparency on a

service’s capabilities. It is crucial that the technique works fromoutsidethe service and allows an

estimate of its capabilitiesbeforeuser sign-up. While the presented study illustrates the technique

for Instagram, it is generalizable to other services as well.2

3.1 From Redlining to Big Data Discrimination

The disclosure or inference of someone’s ethnicity or gender as discussed in this study can have

substantial negative impact. Ethnic and gender discrimination has a long history in many coun-

1In the following ethnicity is meant to also encompasses race (both in the terminology of the United States Census 2010[247]). It

should be further noted that while the inference of sensitive data can impact privacy, the discriminatory use of such data does not fall

under traditional notions of privacy but is rather protected by other rights.

2It should be noted that the results presented here are not meant to imply that Instagram is in fact engaging in any discriminatory

practice. Also, it might be the case that Instagram is alreadyaware of the ethnicity and gender for many of its users becauseof

respective data they submitted directly. However, there areother services that might not be, and the technique introduced here is, in

principle, equally applicable to those.
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tries. The redlining of neighborhoods based on ethnicity in the U.S. in the 1930s for purposes

of finding solvent mortgage debtors might be the earliest occurrence of data-driven discrimina-

tion [237]. It took the civil rights movement three decades later to clearly enunciate theproblem

and take on the struggle to end such practices. However, there are still improvements to be made.

Instances of discrimination continue to happen, for example, in the gentrifying neighborhoods of

New York City [130]. However, these types of redlining, whether gone-by or current, arenot the

only ones. Redlining can also occur online. The FTC recently explored thisphenomenon in a

public workshop posing the question whether big data is a tool for inclusion or exclusion[112].

The FTC reasoned: if ML technologies are used to predict that certain consumers would not be

suitable candidates for prime credit offers, educational opportunities, or certain lucrative jobs, such

educational opportunities, employment, and credit may never be offered tothem[119]. The effect

is equally bad, whether online or offline. Consequently, the FTC vowed to raise awareness about

big data practices that harbor the potential for detrimental impact on underserved populations and

wants to promote the use of technologies to make positive impact on those. The challenge is to

enable the use of big data by companies in a way that benefits them and society, while minimizing

legal and ethical risks[119]. Against this background, tools and systems for identifying and

preventing online redlining and discrimination are of equal importance as its offline counterparts,

and both are often intertwined.

3.2 Methodology and Data

This section will introduce the methodology and data used. The dataset is based on user profiles

collected from the Instagram photo sharing network. As many Instagram photos are tagged with

GPS latitude-longitude locations the accumulated location data can build up to comprehensive

mobility profiles.3 Based on this insight and given that many user profiles on social networks are

publicly accessible it is possible to generalize the used technique and construct a dataset from

readily available data as follows:

1. Public user profiles of a photo sharing service are crawled and photometadata are extracted

3Our exploitation of GPS tags demonstrates an easy defense forthe type of inferences presented here. If users do not tag their

photos it would be much more difficult to track their locations.
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into a database.

2. Corresponding photos are labeled (with labels for ethnicity, gender, etc.) by crowd workers

in an online labor marketplace.

3. The dataset is further enhanced with auxiliary data, e.g., with information that a certain

location is close to a men’s store.

4. Thereafter, the data can be used to analyze attributes on various demographic levels or train

and test classifiers for individual inferences.

Based on the described methodology publicly available data from Instagramwere collected

and supplemented by Foursquare data (Instagram dataset). Specifically, the data was obtained by

crawling Instagram from a root user and following further users subsequently through comments

and likes. This approach biases results towards more active users. Thecrawl retrieved a total of

35,307,441 photo location points belonging to 118,374 unique users; userswho did not have any

geotags in their first 45 photos were skipped. Crowd workers then annotated users’ ethnicities

and genders based on the users’ photos. Those photos often show theusers as studies confirmed

that 91% of teens post a photo of themselves on social networks[186] and that 46.6% of photos

are either selfies or show the user posing with other friends[149]. However, given that an earlier

study also identified 20% of Twitter profile photos as showing persons not associated with the

accounts[212], annotators were instructed to disregard accounts for businesses, celebrities, and

others where they had doubt about the identity of the account owner. They were also asked to

make use of any tagged names to identify the account owners.

To match previous studies[155; 153; 154] annotations were obtained for the Los Angeles

(LA) and New York City (NY) metropolitan areas. A user’s home was specified by the ZIP code

where the user had the most of his or her checkins, which are defined asInstagram latitude-

longitude photo geotags. Each user was labeled by two annotators. In cases of disagreement a

third annotator assigned an additional label to break the tie. In order to measure the quality of

agreement Krippendorff’sα [172] was used. Generally, values above 0.8 are considered as good

agreement, values between 0.67 and 0.8 as fair agreement, and values below 0.67 as dubious[187].

The label categories are based on the categories of the United States Census 2010 (Cen-

sus)[247]. More specifically, the ethnicity labels are based on the Census’ Hispanic or Latino and

Race categories, that is, each user is categorized either as Hispanic or Latino (Hispanic), White
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Figure 3.1: Annotations for LA and NY. Top: percentages of user labels for the different cate-

gories. Bottom: total number of labeled users and annotation agreementresults.

alone (Caucasian), Black or African American alone (African American), or Other (combining

all remaining Census categories). Just as the Census categories, the Hispanic category defined

here includes Hispanics and Latinos of any race while the remaining categories do not include any

Hispanics or Latinos. For the binary ethnicity categorization Caucasians are compared against

all other categories taken together. Auxiliary information was added for each checkin, whenever

available, in form of Foursquare’s average venue popularity and venue category to estimate the

types of places a user would visit. Figure 3.1 shows summary statistics for the labeled data. It

also shows that agreement was at least fair and, thus, reliable ground truth for both ethnicity and

gender classifications.

3.3 Mobility Patterns

The introduced technique can be leveraged to create datasets for use in lieu of proprietary CDR

datasets, for example, those analyzed by Isaacman et al.[154; 155]. As I will demonstrate, both

contain similar mobility patterns. However, in order to make an adequate comparison of the

mobility patterns of the Instagram dataset to those in the CDR dataset of Isaacman et al. I only
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Spring Winter

Statistic LA NY LA NY

Total Checkins 135,503 109,506 118,446 98,286

(Total CDRs) (74M) (62M) (247M) (161M)

Minimum Location/Day 1 1 1 1

1st Quartile Location/Day 1 1 1 1

Median Location/Day 1 1 1 1

(Median Calls/Day) (9) (10) (8) (9)

(Median Texts/Day) - - (4) (3)

Mean Location/Day 1.97 2.12 1.96 2.1

3rd Quartile Location/Day 2 2 2 2

Maximum Location/Day 73 62 98 69

Table 3.1: Statistics of the LA and NY Spring and Winter subsets compared to the CDR dataset

in [154] (where available, in parentheses). Calculations for the LA and NY subsetsdo not consider

any day where a user had no checkins.

consider checkins for the years 2011 through 2013 each for the Spring months from March 15 to

May 15 and for the Winter months from November 15 to January 31 (the LA and NY Spring and

Winter subsets, respectively). As it turns out, the mobility traces from the subsets are much more

sparse. Most notably, while the CDR dataset has at least eight location points from call activity per

day for the median user in LA and NY—and even 12 if text messages are added—the data in all of

the Instagram subsets account for only one location point for the median user per day. Table 3.1

shows the distribution of the data in the subsets compared to those in the CDR dataset[154].

Another insightful metric for comparing mobility patterns is thedaily range, defined as the

maximum straight line distance a phone has traveled in a single day[155]. Daily ranges are

characteristic for mobility because, for example, median daily ranges on weekdays represent a

lower bound for a commute between home and work locations[155]. The maximum range (Max.

Mo.–Fr.) is a user’s longest distance and the median range (Med. Mo.–Fr.)a user’s median

distance, each taken on a single day for the entire Spring subset on a weekday[155]. The median

range at night (Med. Night) represents the median distance a user has traveled on a day for the

entire combined Spring and Fall subset from 7pm–7am[154]. Previous results[154; 155] are
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Figure 3.2: Daily ranges in miles. Top: boxes show the 25th, 50th, and 75th percentiles; whiskers

the 2nd and 98th percentiles. Bottom: table with the percentiles represented inthe boxplots.

shown in parentheses. Calculations do not consider any day where a user had a zero range, that is,

multiple checkins at the same location or a single checkin only. It is definedǫ < 0.005 miles. The

measured ranges are generally smaller than those reported by[154; 155]. However, the general

trends in both datasets are similar. Most importantly, people in LA have generally greater ranges

than people in NY. Also, in both areas people tend to travel longer during theday than at night.

However, there are also differences: according to the Instagram dataNew Yorkers in the 98th

percentiles travel farther than Angelinos. Figure 3.2 shows a subset ofresults for the Instagram

dataset.

3.4 Demographic Patterns

The labeled Instagram data can be used to derive demographic patterns.In the following I discuss

the adjustments that have to be made for the labels to be reliable.
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Adjusting Labels. As the LA and NY subsets are annotated with ethnicity and gender labels it is

possible to compare the resulting demographic distributions to the respective Census distributions.

However, initial comparisons reveal substantial differences, which could be based on selection

bias. For example, according to the Census there are more female than male residents (53% vs.

47%) living in Kings County[247] while the observed label frequencies suggest that there should

be substantially fewer (43% vs. 57%). This result is even more surprisingas the gender-specific

usage rates of Internet (70% vs. 69%)[122] and Instagram (16% vs. 10%)[91] should further

increase the percentage of women beyond the Census. However, while 86% of women social

network account owners set their profile to private, only 74% of men do so [185]. Adjusting the

Census distribution for this difference (as well as for gender-specificInternet and Instagram usage

rates) leads to a distribution of females and males (49% vs. 51%) much closer tothe distribution

observed for the labeled data. Because the various differences are well known the adjustment to

the Census distribution is more likely to represent the true population without having a skewed

view through the idiosyncrasies of Instagram.

Similarly as for gender, I make adjustments for the varying percentages of Internet and In-

stagram usage rates among different ethnicities. However, even then there is still a substantial

Hispanic underrepresentation, which was also observed for the southwest of the United States

by [193]. This phenomenon is difficult to assess, specifically, as ethnicity is not significant for set-

ting a social network profile private[179], activity levels (posting pictures, etc.) are not lower for

Hispanics[239], and annotation disagreements for labeling in the Instagram dataset are not higher

when the Hispanic label is involved. However, the reason for the underrepresentation seems to

be the perception of Caucasian Hispanics as Caucasian alone. In a study, six of seven Caucasian

Hispanics reported that others see them as Caucasian alone[192]. Therefore, it appears that most

Caucasian Hispanics were actually labeled as Caucasian (i.e., annotators agreed on an incorrect

classification). Consequently, the observed label frequencies were adjusted by adding to the His-

panic labels a number of labels corresponding to the Census percentage of Caucasian Hispanics

and subtracting the same number from the Caucasian labels.

Results. When performing chi-square tests for goodness of fit comparing the gender and eth-

nicity distributions of labels to the corresponding Census distributions for different levels of gran-
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Ethnicity Multi-Cat. Ethnicity Binary Gender

Gran. LA NY LA NY NY

State 0/1 0/1 1/1 0/1 1/1

(0%) (0%) (100%) (0%) (100%)

County 1/2 8/11 2/2 6/8 4/4

(50%) (73%) (100%) (75%) (100%)

PUMA 12/16 11/17 2/2 5/6 1/1

(75%) (65%) (100%) (83%) (100%)

NTA - 9/16 - 7/7 2/2

- (56%) - (100%) (100%)

ZIP 3/3 8/14 1/1 3/3 -

(100%) (57%) (100%) (100%) -

Figure 3.3: Chi-square goodness of fit test results for ethnicity and gender at various levels of

Census-defined granularity. Top: detailed view of the multi-category ethnicity distributions for

the NY county level. Left bars show the Census distributions (Cen.) and right bars the label

distributions (Label) in the Instagram dataset. Bottom: complete results of thechi-square tests.

NTAs are specific to NY and not available for LA.

ularity most cases result in a value ofp > 0.05, that is, do not present any evidence to reject

the null hypothesis that the observed gender and ethnicity distributions follow the corresponding

Census distributions. Figure 3.3 shows an example. For eight out of 11 counties in the NY area

the tests resulted inp > 0.05 providing no evidence that the multi-category ethnicity distributions

deviate significantly from the Census distributions. However, there are also differences. It is no

surprise that this is true for the state level as the Instagram dataset only covers users from the LA

and NY metropolitan areas. However, overall the results suggest that geotag data often replicates

demographic trends. Below the ZIP code and NTA levels there was not enough data to perform

chi-square tests. The recommendation by[227] is followed requiring the average expected fre-
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Figure 3.4: Daily ranges in miles. Top: density plot of the maximum daily ranges by ethnic-

ity. Middle: density plot of the median daily ranges at night by gender. Bottom: table with the

percentiles of the daily ranges represented in the plots.

quency for a chi-square test with more than one degree of freedom to beat least two and for a

test with one degree of freedom to be at least 7.5. To prevent skewing due to small sample sizes a

Monte Carlo simulation with 2,000 replicates was used as well.

3.5 Differences in Moving Patterns by Ethnicity and Gender

Combining the previous methodologies of evaluating demographic and mobility patterns reveal

that there are differences in how ethnic groups (and men and women) move. In particular, differ-

ences can be observed in daily ranges, home ranges, and temporal characteristics.
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Daily Ranges. Figure 3.4 shows some of the daily range results for ethnic groups and genders

based on sets of labeled users for LA and NY. These are the same types of daily ranges as described

earlier in Figure 3.2, however, this time for all days of the year. I roundedsmall daily ranges

up to 0.005 miles. Calculations do not consider any day where a user had a zero range, that

is, had multiple checkins at the same location or a single checkin only. It is defined thatǫ <

0.005 miles. Strikingly, Caucasians generally have a higher maximum daily range thanthe other

ethnic groups. Indeed, a two sample Kolmogorov-Smirnov test reveals thatthe Caucasian range

distribution differs significantly (p < 0.05) from the African American and Hispanic distribution.

This result illustrates a more general finding: daily ranges of Caucasiansoften differ significantly

from those of minorities. For 44% (8/18) of the comparisons of a Caucasiandistribution to a

minority distribution (three comparisons for maximum weekday, three for medianweekday, three

for median at night—each for LA and NY) the difference is significant at the 0.05 level. However,

for the comparisons among minority distributions only 6% (1/18) are significantlydifferent from

each other.

The differences in ranges by ethnicity can be most prominently observed inthe comparisons

of Caucasians to African Americans and to Hispanics. However, it shouldbe noted that at night

all ethnicities exhibit very similar ranges. This finding stands in contrast to thedifference in daily

ranges between men and women. In fact, the only statistically significant difference (p < 0.05)

that is observed between male and female ranges occur for the median daily ranges at night. As

shown in Figure 3.4, women tend to travel smaller distances at night than men. There are many

possible explanations for this phenomenon. One reason could be that women travel fewer times

at night due to safety concerns[42] and, consequently, also avoid longer trips. In general, for

both men and women—as well as for all ethnicities—observed daily ranges follow a (skewed) log

normal distribution.

Home Ranges. In order to evaluate differences in mobility with respect to an individual’s home

location the analysis of daily ranges can be complemented with the evaluation ofhome ranges. A

home range is a straight line distance between someone’s home and another place to which the

person travels. Figure 3.5 shows the resulting CCDFs for the home rangesof NY users. Different

from daily ranges I calculate the home range not on a daily basis, but instead consider all home
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Figure 3.5: CCDFs of home ranges for NY. Top: CCDFs for different ethnic groups.Bottom:

CCDFs for males and females.

ranges—whether they were the maximum travel distance for a day or not. Based on a user’s home

location, that is, the ZIP code where the user had the most of his or her checkins, the distance

between the home and each checkin for the different ethnic groups and genders can be calculated.

Both graphs show a noticeable decrease around the 2,500 mile mark, which isthe distance

from NY to major hubs on the West Coast of the United States (most notably LA (2,475 miles),

San Francisco (2,563 mi), and Seattle (2,405 miles)). Men and women have very similar home

ranges at the edges of the graph. However, women travel farther in themedium home ranges. This

finding could be based on the fact that women were found to travel longerdistances to work when

they are employed full-time[175] and generally take more vacations than men[168]. It should

be noted that the larger home ranges are not inconsistent with the previousobservation of shorter

ranges for women at night as that result does obviously not consider ranges during the day. The

plot for ethnicity is in line with previous observations that Caucasians travelfarther from home

than minorities.
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Figure 3.6: Histograms of checkin times for NY. Left: Comparison of weekends and weekdays

for all user groups. Right: Comparison of Caucasian and minority user groups for weekends and

weekdays. Dashed lines correspond to weekends, solid lines to weekdays.

Temporal Checkin Characteristics. Beyond spatial differences there are differences in tem-

poral activity as well. Figure 3.6 shows histograms for checkins by hour of day. As might be

expected, periodic behaviors with low checkin levels between 4–6am and peak levels from 3–8pm

exist. On weekends the lows occur at later times than on weekdays suggesting that users may

wake up later on weekends. There is also a dramatic increase in activity after 5pm on weekdays,

which could correspond to the time at which many users get off of work. When broken up into

Caucasians and minorities, the curves are very similar except with a more pronounced weekday

after-work increase for minorities. It could be the case that Caucasianswork more often in flexible

environments. There is no substantial difference between genders or NY and LA.

3.6 Ethnic Segregation

Location data are the basis for measuring residential segregation, that is,the degree to which two

or more groups live separately from one another in different parts of the urban environment[190].

Trends in residential segregation characterize a group’s proximity to community resources (e.g.,

health clinics) and its exposure to environmental and social hazards (e.g.,poor water quality and

crimes)[220]. In the following I demonstrate how segregation can be analyzed based onthe

Instagram dataset. In this sense online data can also provide insight into redlining occurring

offline. In addition toresidentialsegregation I also introduce and evaluatemobility segregation,

which is the degree to which two or more groupsmoveto and from different parts of an area.



CHAPTER 3. CASE STUDY: DETECTING POTENTIAL ETHNICITY AND GENDER
INFERENCES 33

Mobility segregation allows for a dynamic view of segregation, for example, inorder to determine

a group’s ease of access to community resources away from home.

Methodology. Various intersecting dimensions of segregation can be distinguished[190]. Two

standard measures are explored here, each for a different dimension: the interaction index mea-

sures the dimension of exposure (the extent to which minority group members are exposed to ma-

jority group members in an area[190]) and the entropy index measures the dimension of evenness

(the extent to which minority group members are over- or underrepresented in an area[190]). The

interaction index,B, can be understood as the probability of a minority group member interacting

with a majority group member and is defined[259] by

Bkl =
∑

(
nik

Nk

)(
nil

ni

), (3.1)

wherenik is the population of ethnic minority groupk in areai (e.g., in a ZIP code area),Nk is

the number of persons in groupk in the total population of all areas,nil is the population of ethnic

majority groupl in areai, andni is the area population.

The entropy index has the advantage over other indices that it can be used to measure segre-

gation for more than two groups. It is defined[259], H, as

H =
H∗ − H̄

H∗
, (3.2)

whereH∗ is the population-wide entropy defined by

H∗ = −
K
∑

k=1

Pkln(Pk), (3.3)

andH̄ is the weighted average of the individual areas’ entropies defined by

H̄ = −

I
∑

i=1

ni

N

K
∑

k=1

Pikln(Pik), (3.4)

whereK is the number of different ethnic groups,Pk is the proportion of ethnicityk in the total

population,I is the number of different areas,ni is the population in an area,N is the sum of the

population from all areas, andPik is the proportion of the population of ethnicityk in areai (while

it is defined thatPikln(Pik) = 0 for Pik = 0).
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Hisp./Cauc. Af. A./Cauc. Oth./Cauc.

Gran. LA NY LA NY LA NY

County 0.29 0.34 0.27 0.3 0.3 0.4

(-2%) (+2%) (+1%) (-2%) (-3%) (0%)

PUMA 0.32 0.39 0.43 0.42 0.31 0.49

(-6%) (+3%) (+4%) (+7%) (-10%) (+5%)

NTA - 0.54 - 0.43 - 0.55

- (+6%) - (+3%) - (+7%)

ZIP 0.36 0.56 0.33 0.55 0.58 0.5

(-19%) (0%) (-23%) (+1%) (-1%) (-7%)

∅ % Diff. 5% 6% 5%

Table 3.2: Interaction index (B) for different granularities based on labeled Instagram data.

Differences to the interaction index calculated from Census data are shown inpercentage points

in parenthesis. For example, the probability of a Hispanic person to interact with a Caucasian

person on the PUMA granularity level for NY is 39%. However, as shown inparenthesis, this

result is an overestimation by three percentage points over the Census distribution probability of

36%. The last row of the table shows the mean difference between the labelsand the Census for

the three different ethnicities in absolute percentage points for both LA and NYtogether. Note

that NTAs are not available for LA and that I also did not analyze the state level as the label and

Census distributions differ significantly (Figure 3.3).

For both interaction and entropy indices I make use of the sets of labeled users for LA and NY,

however, exclude all areas for which the label distribution deviated significantly from the Census

distribution as indicated byp ≤ 0.05. Thus, for example, as shown in Figure 3.3, on the county

level I do not include Queens, Kings, and Bergen. These exclusions are necessary as otherwise the

accuracy of results decreases substantially. Recall that a user’s homeis defined as the ZIP code

where he or she had the most checkins and that labels are adjusted per Census distributions (§3.4).

Residential Segregation. For the most part the interaction between Caucasian and minority

group members can be considered fairly high[151]. All three minorities in LA and NY have

similar probabilities of interacting with Caucasians. The measurement errors of 5% (Hisp./Cauc.
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Entropy

Metro County PUMA NTA ZIP ∅ % Diff.

LA 0.01 0.15 - 0.15

3%
(-2%) (+8%) - (+9%)

NY 0.08 0.14 0.08 0.09

(0%) (+1%) (0%) (+4%)

Table 3.3: Entropy index (H) for different granularities based on labeled Instagram data. Dif-

ferences to the entropy index calculated from Census data are shown in percentage points in

parenthesis. As explained in Table 3.2, the last column shows the measurement error. As further

explained in Table 3.2, I did not consider NTA (LA) and state granularities (LA and NY).

and Oth./Cauc.) and 6% (Af. A./Cauc.) between labeled data and the Census suggest that the

results are overall reliable. The inaccurate results for LA on the ZIP code level appear to have

been caused by the smaller number of data points. While the level of interactionseems to increase

when areas become more fine-grained, this phenomenon seems to be caused by the different area

coverage for the various granularities. For example, it is not present when considering all NY city

areas, where the Census distributions for the interaction of African Americans and Caucasians are:

0.41 (County), 0.25 (PUMA), 0.2 (NTA), and 0.22 (ZIP). Tables 3.2 and3.3 show results for the

interaction and entropy indices, respectively.

With entropy index scores ranging from 0.01 to 0.15, as shown in Table 3.3,I find another

indicator for low segregation[151]. However, it should be noted that this low level of segregation

is a characteristic of the particular areas investigated. For example, for allNY city areas at the

NTA level I calculated an entropy of 0.31 indicating higher segregation. However, with mean

differences of 5% (Hisp./Cauc.) and 6% (Af. A./Cauc. and Hisp./Oth.) between the results for the

labeled data and the Census-based calculation the findings are generally reliable. As in the case of

interaction, any existing inaccuracies could be due to small numbers of data points.

Mobility Segregation. I evaluate mobility segregation based on the same measures as residential

segregation—interaction and entropy indices. However, instead of usinghome locations I leverage

checkin data. More specifically, for each user I calculate the percentage that he or she spent at a
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Interaction Entropy

Metro Hisp./Cauc. Af. A./Cauc. Oth./Cauc. All Eth.

LA 0.55 0.57 0.58 0.06

(+1%) (0%) (-1%) (+1%)

NY 0.54 0.53 0.53 0.06

(-2%) (-1%) (-5%) (+2%)

∅ % Diff. 1% 1% 3% 1%

Table 3.4: Mobility interaction and entropy indices for ZIP code granularity based on labeled

Instagram data. Differences to the residential interaction and entropy indices calculated from

Census data are shown in percentage points in parenthesis. The last rowof the table shows the

mean difference between labeled and Census data in absolute percentagepoints for both LA and

NY together.

certain area and sum the resulting values for all users of a certain ethnicity. This method aims to

avoid overcounting of active users. Results are shown in Table 3.4 and indicate that segregation

levels in terms of where people go are similar to levels of where people live. Indeed, it would

have been surprising to see higher segregation levels as members of minoritygroups may work

in predominantly Caucasian areas. Furthermore, it would also have been asurprise to see lower

levels of segregation as residential segregation is already relatively low.

3.7 Inferring Ethnicity and Gender

The distinctive mobility patterns that users of different ethnicity and genderoften reveal enable

prediction of those characteristics with reasonable accuracy using ML algorithms. Thus, they

allow for an estimate to which extent a web service, in this case Instagram, is able to infer ethnicity

and gender from its users. All following experiments were performed using scikit-learn’s[211]

implementations of logistic regression, decision trees, naive Bayes, and support vector machines

(SVMs). The tasks are to distinguish between men and women and Caucasians and minorities.

Both task are based on roughly equal class sizes.

Features falling into one of three groups were used:general location-based features, counts

or percent of visits to each checkin;Foursquare-based features such as the average popularity of
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Task Parameters Important Features Base Acc AUC F1

Ethnicity NY L1, C = 0.01 Avg. ZIP ethnicities 0.52 0.72 0.76 0.74

Ethnicity LA L1, C = 1 Avg. ZIP ethnicities 0.50 0.63 0.66 0.64

Gender NY L2, C = 0.1 Men’s Store 0.53 0.58 0.59 0.55

Table 3.5: Results for the binary classifications of ethnicity and gender in NY and LA using lo-

gistic regression. The algorithm ran on all available features, such as counts of visits to different

neighborhoods, the ethnicity of the most visited block, and the categories of nearby Foursquare

venues. The baseline was obtained by predicting the class of a user based on the label distribution.

visited venues or counts of visits to venues with certain categories; andCensusderived features

such as the average ethnic makeup of all visited locations and the ethnic makeup of a user’s most-

visited location. For each experiment five-fold cross validation was applied, that is, data was

broken down into five groups, four of which were used for training andone for testing. After

running all algorithms with all features, the best results are reported in Table 3.5.

The results suggest indeed that Instagram indeed can infer a user’s ethnicity and gender from

geotags. The accuracy for predicting ethnicity falls squarely within what has been reported for

other types of data. On the lower bound, in their work of predicting individual Twitter users as

African-American or not based on linguistic features of Tweets,[212] report as best performance

an F-1 score of 0.655. On the upper bound, for predicting whether the ethnic origin of a phone

user is inside or outside the United States based on a rich feature set containing Internet usage,

call, text message, and location features[30] achieved an F-measure of 0.806 and for gender an

F-measure of 0.611. Given that the data evaluated here contains far fewer features geotags appear

surprisingly powerful in predicting ethnicity and gender.

Auxiliary information about a location derived from Foursquare or the Census may not always

be available, such as in countries without publicly available census data or when locations are

anonymized. Additionally, the granularity of location data can vary greatly depending on how it

is created. For example, the GPS in a cell phone may have accuracy up to a few yards, while CDR

data may cover several square miles. The granularity of location data is often lowered in order to

increase the privacy of a dataset.
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Figure 3.7: Accuracy of ethnicity prediction vs. granularity for the NY labeled data usingsev-

eral different inference techniques. Unsurprisingly, the Full algorithm,which uses features from

Foursquare and the Census performs the best. Interestingly, however, much simpler algorithms

with limited information achieve good results as well.

In order to understand the impact of auxiliary information and granularity onthe ability to

make inferences, it is informative to compare the highest performing algorithm of §3.7 with algo-

rithms that used only a subset of the Foursquare features or Census features. Additionally, to see

if labeled profiles were necessary to infer ethnicity, simple decision rules that required no training

were added.

Specifically, the following algorithms were tested:

• Unsupervised Threshold: To test if labeled data was necessary to guess ethnicity, a simple

decision rule that used no labels was applied. Using Census data, I calculated the average

percentage of Caucasian people living in all locations that a user visited. If this percentage

was over the city’s average, the algorithm predicts that the user was Caucasian. If it was

under, it predicts that the user was part of a minority ethnicity.

• Supervised Threshold: As a point of comparison, the previously-mentioned decision rule

was run again but this time it learned the threshold on a set of training data. The performance

of this relative to the unsupervised threshold algorithm shows the impact of labeled data.

• Uninformed: The best performing algorithm (logistic regression) run on a reduced feature

set of only the percentages of a user’s checkins at each location serves as a lower bound on

the performance of an algorithm on labeled data using only location information.
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• Bayesian: A simple bayesian algorithm.

• Foursquare: Logistic regression using only the features derived from Foursquare.

• Full: The best performing algorithm from§3.7 which uses features derived from the U.S.

Census and Foursquare. This serves as an upper bound on performance.

For all applicable algorithms, again five-fold cross validation was employed.To view the

stability the process was repeated 30 times, using 30 different data partitionings into training and

test sets. The results of this experiment are shown in Figure 3.7. All algorithms were ran on

the dataset of NY users. To understand the impact of location granularity on prediction accuracy

location data was represented at several different granularities defined by the Census ranging from

block groups to states. Additionally GPS granularity was considered as well.

It can be observed that the Full algorithm achieves the best performance, as might be expected.

Comparing it to the Uninformed result shows that auxiliary information provides a large perfor-

mance boost. However, interestingly, many of the algorithms which only use counts of visits to

areas within NY perform as well as the richer features derived from Foursquare. Another inter-

esting result is that both the Bayesian algorithm and Uninformed algorithm perform well with the

Uninformed algorithm outperforming the Unsupervised Threshold above the neighborhood gran-

ularity and the Bayesian algorithm outperforming the supervised threshold.This means that given

enough labeled data of counts of visits to locations an algorithm with no auxiliaryinformation can

infer ethnicity with relative good accuracy.

The performance of all algorithms decreases at coarse granularities. This is most likely be-

cause the ethnicity distributions of larger regions are closer to the overall city distribution and

provide less information. Several algorithms improve in performance at medium granularities

such as ZIP and Neighborhood. This phenomenon is most likely caused bythe sparsity of the

dataset at the finest granularity, as many blocks are visited by only a few users. Overall, the results

demonstrate the privacy implications of predicting from seemingly innocuous data demographic

characteristics that might be considered sensitive.
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3.8 Conclusion

As it is the claim of this thesis that ML is an essential technology to advance privacy on the

Internet, the presented case study illustrates that ML algorithms can be usedto identify a web

service’s potential to make ethnicity- and gender-specific inferences. The introduced technique is

service-agnostic and can be leveraged for social networks beyond Instagram as well as other types

of web services. In addition, the study also demonstrates that Internet privacy is often linked to

offline privacy. The discussed methodology allows the study of discrimination and segregation

both online and offline.

There are various extensions of the study. First, beyond ethnicity and gender, attributes such

as age, occupation, and other lifestyle features may be analyzed, and naturally there are many

other mobility properties to account for in addition to, for example, daily ranges. Second, better

understanding the discriminative power of location data might inform the design of tools for rais-

ing user awareness about the information they reveal. This insight motivates revisiting mobility

modeling and the inferences it renders possible to empower users to hide ormake available their

locations at will.
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Chapter 4

Using Machine Learning to Quantify

Potential Fourth Amendment Violations

As the discussed case study illustrates, social networks as well as other organizations with access

to an individual’s data can learn facts that the individual did not disclose directly. However, current

privacy metrics are not suitable to quantify this type of privacy loss and donot translate into legal

categories. To help mitigating this shortcoming I will demonstrate in the following howML can

be used to quantify privacy-invasive ML data practices, particularly, governmental practices based

on extensive location surveillance. In this sense, ML enables the measurement of potential Fourth

Amendment violations.

4.1 The Mosaic Theory

While traditionally each observation by law enforcement is treated as a discrete event that is eval-

uated separately for its Fourth Amendment relevance[252], ML provides a rationale to move

beyond this limited view. The holistic perspective that evaluates collected data more compre-

hensively is known as mosaic theory.1 ML provides a justification for the mosaic theory. At

1The term “mosaic theory” appears to have been first used by the Court of Appeals for the District of Columbia Circuit: “As with

the ’mosaic theory’ often invoked by the Government in cases involving national security information, ’What may seem trivialto the

uninformed, may appear of great moment to one who has a broad view of the scene.”’[253] It should be noted, though, that the mosaic

theory is not (yet?) recognized by the Supreme Court.
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its essence, the mosaic theory states that a set of observations about a person can create a more

complete picture than the sum of individual observations. In other words,an observer can learn

more than a simple tally of the collected data would suggest. This phenomenon is reflected in

the increase of prediction accuracy with more data common to many ML tasks. Thus, troubling

Fourth Amendment concerns emerge. As Justice Sotomayor expressed in her concurring opinion

in Jones[250]:

Disclosed in [GPS] data ... will be trips the indisputably private nature of whichtakes

little imagination to conjure: trips to the psychiatrist, the plastic surgeon, the abortion

clinic, the AIDS treatment center, the strip club, the criminal defense attorney, the

by-the-hour motel, the union meeting, the mosque, synagogue or church, the gay bar

and on and on.”

In this sense, ML helps explain why there can be “privacy in public.” Themovements in public

spaces can be meaningful information to learn information about an individual that can be pro-

tected by the privacy right. Furthermore, law enforcement is able to know more with considerably

less effort. Thus, in addition to the increase in learning power the mosaic theory addresses the

practical concern that the relative ease of data accumulation removes the economic check on abu-

sive governmental activity that might otherwise exist. The fact that locationtracking is cheap can

be understood as eroding a vital bulwark of Fourth Amendment protection. While the increased

efficiency in learning does not necessarily always create a Fourth Amendment violation, at some

point an observer can learn disproportionately more relative to the expended effort. As Justice Al-

ito stated in Jones, the economic aspect of automatic accumulation of data becomes increasingly

troubling[251]:

In the pre-computer age, the greatest protections of privacy were neither constitutional

nor statutory, but practical. Traditional surveillance for any extended period of time

was difficult and costly and therefore rarely undertaken. The surveillance at issue in

this case—constant monitoring of the location of a vehicle for four weeks—would

have required a large team of agents, multiple vehicles, and perhaps aerial assistance.

Only an investigation of unusual importance could have justified such an expenditure

of law enforcement resources.
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Figure 4.1: The change in slope of a graph can be used to identify at what point accuracy improves

substantially given a certain quantity of input. Top: Graph with synthetic data. Bottom: Close-up

of the graph with various slopes.

The mosaic theory captures the fundamental idea that privacy can be compromised indirectly

over time. Even if a particular sensitive trait of a person (such as sexualorientation) is not known

to a government, the continued observation of that person disclose facts (such as visits to gay bars)

that give away that trait. Individual facets of a person can turn into a much more complete mosaic

of someone’s character and life. Indeed, confirming Justice Sotomayor’s intuition, as shown in the

previous chapter, it is possible to infer an individual’s ethnicity with reasonable accuracy solely

based on location data. Few sparse location data points from Instagram were sufficient to identify

the ethnicity for nearly three out of four people. Considering that, for example, Facebook has

much more information about its users than just location, it is likely that their predictions of

ethnicity[200] are even more accurate.
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4.2 Determining the Formation of a Mosaic

The central question then is this: at what point does the tracking, aggregation, and processing of

data by ML techniques arise to the quality of a search in violation of the Fourth Amendment?

While it is difficult to provide a formal mathematical definition, it can be defined descriptively.

Suppose we relate the amount of observations to the accuracy of a prediction, as shown in Fig-

ure 4.1, then the slope at a certain point visualizes that a given amount of data yields a certain

accuracy. The change in slope, however, is what is significant here:if the slope is increasing

as more data points are considered, and especially if it is increasing rapidly, the change in slope

tells us that we have a better chance of learning proportionally more from later than from earlier

observations. Thus, a certain threshold of a changing slope can be interpreted as the formation

of a mosaic. In determining the threshold, which depends on the individual circumstances that

are difficult to generalize, three aspects are particularly relevant: data granularity, quantity, and

availability of auxiliary data. For example, as shown in the previous chapter for inferring ethnicity

from the Instagram dataset, algorithmic performance decreased at the coarse granularities.

4.3 Applying Privacy Metrics

ML classifiers return probabilities for the existence of a class. Thus, theirimmediate results are

not related to privacy. However, when used in combination with privacy metrics it becomes indeed

possible to quantify privacy. To illustrate the point I focus on two well-known privacy metrics:

k-anonymity andl-diversity. Ink-anonymity the identity of a person is protected. By definition,

k-anonymity is concerned with sizek of a group of people; whenk = 1, a person is certainly

identifiable. In contrast tok-anonymity,l-diversity deals with a larger set of protected attributes:

quasi-identifiers.l-diversity generalizesk-anonymity in that any attribute can be specified as a

quasi-identifier, and for each there must be at leastl possible values. However, how canl-diversity

be mapped to the output of machine learning algorithms? In order to reconcile the two we either

need to transform the ML outputs or formulate a different privacy metric in terms of probabilities. I

propose the former and provide a simple rule for converting probabilities intoanl-diverse answer:

Given that a machine learning algorithm returns a probability,p, for the existence of an attribute,

it holds thatl = ⌊1
p
⌋.
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Let us illustrate the rule by an example. If investigators believe that a suspected drug dealer

driving in his car picked up a bag containing drugs in San Francisco, the machine learning al-

gorithm may return a 40% probability for a pick-up stop in San Francisco. This result can be

translated into 2-diversity. Now, why is that the case? In general, the probabilities for selecting

the correct answer from two equally likely possibilities at random would be 50%, from three pos-

sibilities 33.1/3%, from four 25%, and so on. Thus, if the probability returned from the machine

learning algorithm is greater than 50%, there is a higher chance of being correct when selecting

this answer compared to any other answer. This can be interpreted as 1-diversity. However, if

the probability returned is not greater than 50%, but greater than 33.1/3%,we have 2-diversity.

If it is not greater than 33.1/3%, but greater than 25%, 3-diversity, andso on. Because in the

example the probability that the suspect picked up something in San Franciscois 40%, it holds

thatl = ⌊ 1

0.4
⌋ = ⌊2.5⌋ = 2, that is, the mapping creates 2-diversity.

The demonstrated transformation leads to another observation. Whatever question the inves-

tigators ask, it must be checked if the probability of the answer is greater than 50%. If that is

the case, the corresponding answer is more likely to be correct than all others. Consequently, the

prediction of an attribute (in case ofl-diversity) or the identification of the suspect (in case of

k-anonymity) is more likely to be successful than not and we have 1-anonymityand 1-diversity,

respectively. Given such result and given that the type of information asked for is protected as

well, a Fourth Amendment violation may exist. In other words, the mapping provides a rationale

based onk-anonymity andl-diversity for quantifying a reasonable expectation of privacy violation

at a 50% probability threshold. Thus, if eitherk-anonymity orl-diversity are used in the manner

described, they import (and justify) a probabilistic understanding of privacy into the reasonable

expectation of privacy analysis. However, in addition to the probability forthe occurrence of a

fact its plausibility[53] should also be considered.

4.4 Identifying a Privacy Violation

In order to establish a case under the mosaic theory, it is necessary to show that ML inferences

can indeed violate the reasonable expectation of privacy. In other words, machine learning tech-

niques must be used to deduce facts that are not otherwise ascertainablewithout violating clearly
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established principles, most fundamentally the privacy protections originating from the privacy of

the home. The reasonable expectation of privacy of today’s Fourth Amendment doctrine accom-

modates this notion and is explicitly couched in terms of societal expectations, i.e.,what people

as a whole believe is “reasonable.” Consider Justice Harlan’s concurrence in Katz[162]: “there

is a twofold requirement, first that a person have exhibited an actual (subjective) expectation of

privacy and, second, that the expectation be one that society is prepared to recognize as ‘reason-

able.”’ Societal expectations, though, are based on what is customary,and customary behavior by

law enforcement is based in part on economic factors and is limited by what people will put up

with. Thus, for example, visits to “the union meeting, the mosque, synagogue or church, the gay

bar” [250] can be protected information under the Fourth Amendment if contemporary societal

expectations consider them private. In this regard, it should be noted that sensitive information is

not always protected by the Fourth Amendment. The inquiry has to be focused on the latter.

The ramifications of the quantification approach discussed here are diverse. As ML algorithms

and features are increasingly used by government agencies and regulators the legal consequences

of applying these technologies for purposes of investigating crimes and enforcing laws will be-

come more prevalent. For example, if data analysis can lead to discovery of sensitive information

that are protected under the Fourth Amendment, police would need to generally obtain a warrant

before collecting or, at least, analyzing such data. Also, if there is a high likelihood that sensitive

information can be inferred, governmental agencies cannot request from a company to turn over

the user data that would enable such inferences (again, except if the agencies have a warrant or

other exceptions are applicable).

4.5 Conclusion

As machine learning can have substantial privacy implications, it should be part of all efforts

to quantify privacy. I have shown how ML can be operationalized in the mosaic theory—under

which the prolonged observation of a person can lead to a violation of the reasonable expectation

of privacy under the Fourth Amendment—via existing privacy metrics. In thisregard, machine

learning also provides a justification for the mosaic theory. However, the approach described here

for measuring the degree of privacy loss is only a start. While I have shown a way to translate the
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output of machine learning algorithms into a legal definition of privacy via a commonly known

privacy metric, it will be an important task for the future to develop a more general privacy metric

that is mathematically sound, technically useful, and legally relevant. It should, for example, cover

the distinction between PII and non-PII, which is a fundamental legal dichotomy.
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Chapter 5

Automating Notice and Choice

Various technologies were proposed to mitigate the challenges for users to understand privacy

notices and make their choices under the current privacy regime. However, none of them gained

widespread acceptance—neither among users, nor in the industry. Mostprominently, The Platform

for Privacy Preferences (P3P) project[71; 75] was not widely adopted, mainly, because of a lack

of incentive on part of the industry to express their policies in P3P format. In addition, P3P was

also criticized for not having enough expressive power to describe privacy practices accurately and

completely[70; 16]. Further, existing crowdsourcing solutions, such as Terms of Service;Didn’t

Read (ToS;DR)[10], do not scale well and are unlikely to gain more popularity at this point.

Informed by these experiences I developed Privee—a novel software architecture for analyzing

web privacy policies.

5.1 The Privee Concept

Figure 5.1 shows a conceptual overview of Privee, which makes use ofautomatic classifiers and

complements them with privacy policy crowdsourcing. It integrates variouscomponents of the

current web privacy ecosystem. Policy authors write their policies in natural language and do not

need to adopt any special machine-readable policy format. When a user wants to analyze a privacy

policy, Privee leverages the discriminative power of crowdsourcing. As we will see in Section 5.3

that classifiers and human interpretations are inherently limited by ambiguous language, it is espe-

cially important to resolve those ambiguities by providing a forum for discussion and developing
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Figure 5.1: Privee system overview. When a user requests a privacy policy analysis, the system

checks whether the analysis results are available at a crowdsourcing repository (to which crowd

contributors can submit analysis results of policies). If results are available, they are returned and

displayed to the user (I. Crowdsourcing Analysis). If no results are available, the policy text is

fetched from the policy website, analyzed by automatic classifiers on the clientmachine, and then

the analysis results are displayed to the user (II. Classifier Analysis).

consensus among different crowd contributors. Further, Privee complements the crowdsourcing

analysis with the ubiquitous applicability of rule and ML classifiers for policies that are not yet an-

alyzed by the crowd. Because the computational requirements are low, as shown in Section 5.3.3,

a real time analysis is possible.

As the P3P experience showed[70] that a large fraction of web services with P3P policies mis-

represented their privacy practices, presumably in order to prevent user agents from blocking their

cookies, any privacy policy analysis software must be guarded against manipulation. However,

natural language approaches, such as Privee, have an advantageover P3P and other machine-

readable languages. Because it is not clear whether P3P policies are legally binding [229] and

the FTC never took action to enforce them[177], the misrepresentation of privacy practices in

those policies is a minor risk that many web services are willing to take. This is truefor other

machine-readable policy solutions as well. In contrast, natural language policies can be valid

contracts[1] and subject to the FTC’s enforcement actions against unfair or deceptive acts or

practices (15 U.S.C.§45(a)(1)). Thus, web services are more likely to ensure that their natural

language policies represent their practices accurately.

When capturing privacy policy text it is crucial to do so completely and without additional

text, in particular, free from advertisements on the policy website. Further,while it is true that
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an ill-intentioned privacy policy author might try to deliberately use ambiguous language to trick

the classifier analysis, this strategy can only go so far as ambiguous contract terms are interpreted

against the author (Restatement (Second) of Contracts,§206) and might also cause the FTC to

challenge them as unfair or deceptive. Beyond safeguarding the classifier analysis, it is also im-

portant to prevent the manipulation of the crowdsourcing analysis. In this regard, the literature

on identifying fake reviews should be brought to bear. For example, Wu et al. [262] showed that

fake reviews can be identified by a suspicious grade distribution and their posting time following

negative reviews. In order to ensure that the crowdsourcing analysisreturns the latest results the

crowdsourcing repository should also keep track of privacy policy updates.

5.2 The Privee Browser Extension

Figure 5.2: Simplified Privee program flow.
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I implemented Privee as a proof of concept browser extension for Google Chrome. After

the user has started the extension, the web scraper obtains the text of the privacy policy to be

analyzed (example.com) as well as the current URL (http://example.com/). The crowdsourcing

preprocessor then extracts from the URL the ToS;DR identifier and checks the ToS;DR repository

for results. If results are available, they are retrieved and forwardedto the labeler, which converts

them to a label for display to the user. However, if no results are available on ToS;DR the policy

text is analyzed. First, the rule classifier attempts a rule-based classification. However, if that is

not possible the ML preprocessor prepares the ML classification. It checks if the ML classifier

is already trained. If that is the case, the policy is classified by the ML classifier, assigned a

label according to the classifications, and the results are displayed to the user. Otherwise, a set

of training policies is analyzed by the trainer first and the program proceeds to the ML classifier

and labeler afterwards. The set of training policies is included in the extension package and only

needs to be analyzed for the first run of the ML classifier. Thereafter,the training results are

kept in persistent storage until deletion by the user. I wrote the Privee extension in JavaScript

using the jQuery library and Ajax functions for client-server communication.While the extension

is designed as an end user tool, it can also be used for research, for example, in order to easily

compare different privacy policies. Figure 5.2 shows a simplified overview of the program flow.

In this section I describe the various stages of program execution.

5.2.1 Web Scraper

The user starts the Privee extension by clicking on its icon in the Chrome toolbar. Then, the web

scraper obtains the text of the privacy policy that the user wants to analyze and retrieves the URL

of the user’s current website. While the rule and ML classifier analysis only works from the site

that contains the policy to be analyzed, the crowdsourcing analysis workson any website whose

URL contains the policy’s ToS;DR identifier.

5.2.2 Crowdsourcing Preprocessor

The crowdsourcing preprocessor is responsible for managing the interaction with the ToS;DR

repository. It receives the current URL from the web scraper fromwhich it extracts the ToS;Dr

identifier. It then connects to the API of ToS;DR and checks for the availability of analysis results,
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that is, short descriptions of privacy practices and sometimes an overallletter grade. The results,

if any, are forwarded to the labeler and displayed to the user. Then the extension terminates.

Otherwise, the policy text, which the crowdsourcing preprocessor also received from the web

scraper, is forwarded to the rule classifier and ML preprocessor.

5.2.3 Rule Classifier and ML Preprocessor

Generally, classifiers can be based on rule or ML algorithms. In preliminary experiments I found

that for some classification categories a rule classifier worked better, in others an ML classifier, and

in others again a combination of both[240; 257]. I will discuss classifier selection in Section 5.3.1

in more detail. This section will focus on the feature selection process for therule classifier and

ML preprocessor. Both rule classification and ML preprocessing are based on feature selection by

means of regular expressions.

My preliminary experiments showed that classification performance depends strongly on fea-

ture selection. Ammar et al.[32] discuss a similar finding. Comparable to other domains[257],

feature selection is particularly useful here for avoiding misclassificationsdue to the heavily im-

balanced structure of privacy policies. For example, in many multi-page privacy policies there is

often only one phrase that determines whether the web service is allowed to combine the collected

information with information from third parties to create personal profiles of users. Especially,

supervised ML classifiers do not work well in such cases, even with undersampling (removal of

uninteresting examples) or oversampling (duplication of interesting examples)[170]. Possible so-

lutions to the problem are the separation of policies into different content zones and applying a

classifier only to relevant content zones[173] or—the approach adopted here—running a classifier

only on carefully selected features.

The extension’s feature selection process begins with the removal of all characters from the

policy text that are not letters or whitespace and conversion of all remaining characters to lower

case. However, the positions of removed punctuations are preserved because, as noted by Biagoli

et al. [48], a correct analysis of the meaning of legal documents often depends on the position

of punctuation. In order to identify the features that are most characteristic for a certain class I

used the term frequency-inverse document frequency (tf-idf) statisticas a proxy. With tf-idf it is

possible to measure how concentrated into relatively few documents the occurrences of a given
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word are in a document corpus[218]. Thus, words with high tf-idf values correlate strongly with

the documents in which they appear and can be used to identify topics in that document that are not

discussed in other documents. However, instead of using individual words as features the use of

bigrams lead to better classification performance, which was also discussedin previous works[32;

194].

1 (ad|advertis.*)

(compan.*|network.*|provider.*|servin.*|serve.*|vendor.*) |

(behav.*|context.*|network.*|parti.*|serv.*) (ad|advertis.*)

Listing 5.1: Simplified pseudocode of the regular expression to identify whether a policy

allows advertising tracking. For example, the regular expression would match “contextual

advertising.”

The method by which the Privee extension selects characteristic bigrams, which usually con-

sist of two words, but can also consist of a word and a punctuation mark,is based on regular

expressions. It applies a three-step process that encompasses both rule classification and ML pre-

processing. To give an example, for the question whether the policy allowsadvertising tracking

(e.g., by ad cookies) the first step consists of trying to match the regular expression in Listing 5.1,

which identifies bigrams that nearly always indicate that advertising trackingis allowed. If any

bigram in the policy matches, no further analysis happens, and the policy is classified by the rule

classifier as allowing advertising tracking. If the regular expression does not match, the second

step attempts to extract further features that can be associated with advertising tracking (which

are, however, more general than the previous ones). Listing 5.2 showsthe regular expression used

for the second step.

1 (ad|advertis|market) (.+)|(.+) (ad|advertis|market)

Listing 5.2: Simplified pseudocode of the regular expression to extract relevant phrases for

advertising tracking. For example, the regular expression would match “no advertising.”

The second step—the ML preprocessing—is of particular importance for the analysis because

it prepares classification of the most difficult cases. It extracts the features on which the ML
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classifier will run later. To that end, it first uses the Porter stemmer[215] to reduce words to their

morphological root[48]. Such stemming has the effect that words with common semantics are

clustered together[125]. For example, “collection,” “collected,” and “collect” are all stemmed into

“collect.” As a side note, while stemming had some impact, there was no substantialperformance

increase for running the ML classifier on stemmed features compared to unstemmed features. In

the third step, if no features were extracted in the two previous steps, the policy is classified as not

allowing advertising tracking.

5.2.4 Trainer

In the training stage the Privee extension checks whether the ML classifieris already trained. If

that is not the case, a corpus of training policies is preprocessed and analyzed. The analysis of a

training policy is similar to the analysis of a user-selected policy, except that the extension does not

check for crowdsourcing results and only applies the second and third step of the rule classifier

and ML preprocessor phase. The trainer’s purpose is to gather statistical information about the

features in the training corpus in order to prepare the classification of the user-selected policy.

It stores the training results locally in the user’s browser memory using persistent web storage,

which is, in principle, similar to cookie storage.

5.2.5 Training Data

The training policies are held in a database that is included in the extension package. The database

holds a total of 100 training policies. In order to obtain a representative cross section of training

policies, I selected the majority of policies randomly from the Alexa top 500 websites for the

U.S. [28] across various domains (banking, car rental, social networking, etc.).However, a few

random policies from lesser frequented U.S. sites and sites from other countries that published

privacy policies in English were also included. The trainer accesses these training policies one

by one and adds the training results successively to the client’s web storage. After all results are

added the ML classifier is ready for classification.

5.2.6 ML Classifier

I now describe the ML classifier design and the classification categories.
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ML Classifier Design. In order to test the suitability of different ML algorithms for analyzing

privacy policies I performed preliminary experiments using the Weka library[142]. Performance

for the different algorithms varied. I tested all algorithms available on Weka,among others the Se-

quential Minimal Optimization (SMO) algorithm with different kernels (linear, polynomial, radial

basis function), random forest, J48 (C4.5), IBk nearest neighbor,and various Bayesian algorithms

(Bernoulli naive Bayes, multinomial naive Bayes, Bayes Net). Surprisingly, the Bayesian algo-

rithms were among the best performers. Therefore, I implemented naive Bayes in its Bernoulli

and multinomial version. Because the multinomial version ultimately proved to have better per-

formance, I settled on this algorithm.

As Manning et al.[187] observed, naive Bayes classifiers have good accuracy for many tasks

and are very efficient, especially, for high-dimensional vectors, and they have the advantage that

training and classification can be accomplished with one pass over the data. The naive Bayes

implementation is based on their specification[187]. In general, naive Bayes classifiers make use

of Bayes’ theorem. The probability,P , of a document,d, being in a category,c, is

P (c|d) ∝ P (c)
∏

1≤k≤nd

P (tk|c), (5.1)

whereP (c) is the prior probability of a document occurring in categoryc, nd is the number of

terms ind that are used for the classification decision, andP (tk|c) is the conditional probability

of term tk occurring in a document of categoryc [187]. In other words,P (tk|c) is interpreted as

a measure of how much evidencetk contributes forc being the correct category[187]. The best

category to select for a document in a naive Bayes classification is the category for which it holds

that

argmax
c∈C

P̂ (c|d) = argmax
c∈C

P̂ (c)
∏

1≤k≤nd

P̂ (tk|c), (5.2)

whereC is a set of categories, which, in the case here, is always of size two (e.g.,{ad tracking, no

ad tracking}). The naive assumption is that the probabilities of individual terms within a document

are independent of each other given the category[125]. However, the implementation here differs

from the standard implementation and tries to alleviate the independence assumption. Instead of

processing individual words of the policies the system tries to capture somecontext by processing
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bigrams.

Analyzing the content of a privacy policy requires multiple classification decisions. For ex-

ample, the classifier has to decide whether personal information can be collected, disclosed to

advertisers, retained indefinitely, and so on. This type of classification is known as multi-label

classification because each analyzed document can receive more than one label. One commonly

used approach for multi-label classification withL labels consists of dividing the task into|L|

binary classification tasks[245]. However, other solutions handle multi-label data directly by

extending specific learning algorithms[245]. It turned out to be simpler to implement the first

approach. Specifically, at execution time multiple classifier instances are created—one for each

classification category—by running the classifier on category-specific features extracted by the

ML preprocessor.

Classification Categories. For which types of information should privacy policies actually be

analyzed? In answering this question, one starting point are fair information practices[66]. An-

other one are the policies themselves. After all, while it is true that privacy lawin the U.S. gen-

erally does not require policies to have a particular content, it can be observed that all policies

conventionally touch upon four different themes: information collection, disclosure, use, and man-

agement (management refers to the handling of information, for example, whether information is

encrypted). The four themes can be analyzed on different levels of abstraction. For example, for

disclosure of information, it could simply be analyzed whether information is disclosed to outside

parties in general, or it could be investigated more specifically whether information is disclosed to

service providers, advertisers, governmental agencies, credit bureaus, and so on.

At this point it should be noted that not all information needs to be analyzed.In some instances

privacy policies simply repeat mandatory law without creating any new rightsor obligations. For

example, a federal statute in the U.S.—18 U.S.C.§2703(c)(1)(A) and (B)—provides that the gov-

ernment can demand the disclosure of customer information from a web service provider after

obtaining a warrant or suitable court order. As this law applies independently of a privacy policy

containing an explicit statement to that end, the provision that the provider willdisclose informa-

tion to a governmental entity under the requirements of the law can be inferredfrom the law itself.

In fact, even if a privacy policy states to the contrary, it should be assumed that such informa-
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tion disclosure will occur. Furthermore, if privacy policies stay silent on certain subject matters,

default rules might apply and fill the gaps.

Another good indicator of what information should be classified is providedby user studies.

According to one study[72], knowing about sharing, use, and purpose of information collection

is very important to 79%, 75%, and 74% of users, respectively. Similarly, inanother study[16]

users showed concern for the types of personal information collected,how personal information is

collected, behavioral profiling, and the purposes for which the information may be used. While it

was only an issue of minor interest earlier[72], the question how long a company keeps personal

information about its users is a topic of increasing importance[16]. Based on these findings,

it appears advantageous to perform six different binary classifications, that is, whether or not a

policy

• allows collection of personal information from users (Collection);

• provides encryption for information storage or transmission (Encryption);

• allows ad tracking by means of ad cookies or other trackers (Ad Tracking);

• restricts archiving of personal information to a limited time period (Limited Retention);

• allows the aggregation of information collected from users with information from third par-

ties (Profiling);

• allows disclosure of personal information to advertisers (Ad Disclosure).

For purposes of the analysis, where applicable, it is assumed that the user has an account

with the web service whose policy is analyzed and is participating in any offered sweepstakes

or the like. Thus, for example, if a policy states that the service provider only collects personal

information from registered users, the policy is analyzed from the perspective of a registered user.

Also, if certain actions are dependent on the user’s consent, opt in, oropt out, it is assumed that the

user consented, opted in, or did not opt out, respectively. As it was my goal to make the analysis

results intuitively comprehensible to casual users, which needs to be confirmed by user studies, I

tried to avoid technical terms. In particular, the term “personal information”is identical to what is

known in the privacy community as personally identifiable information (while “information” on

its own also encompasses non-PII, e.g., user agent information).

It is noteworthy that some of the analyzed criteria correspond to the semantics of the P3P
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Compact Specification[5]. For example, the P3P token NOI indicates that a web service does not

collect identified data while ALL means that it has access to all identified data. Thus, NOI and

ALL correspond to the collection category. Also, in P3P the token IND meansthat information

is retained for an indeterminate period of time, and, consequently, is equivalently expressed when

the classifier comes to the conclusion that no limited retention exists. Further, PSA, PSD, IVA,

and IVD are tokens similar to the profiling category. Generally, the correspondence between the

semantics of the P3P tokens and the categories here suggests that it is possible to automatically

classify natural language privacy policies to obtain the same information thatweb services would

include in P3P policies without actually requiring them to have such.

5.2.7 Labeler

The extension’s labeler is responsible for creating an output label. As it was shown that users

casually familiar with privacy questions were able to understand privacy policies faster and more

accurately when those policies were presented in a standardized format[165] and that most users

had a preference for standardized labels over full policy texts[165; 166], I created a short stan-

dardized label format. Generally, a label can be structured in one or multipledimensions. The

multidimensional approach has the advantage that it can succinctly display different privacy prac-

tices for different types of information. However, one-dimensional formats, as used here, were

shown to be substantially more comprehensible[167; 222].

In addition to the descriptions for the classifications, the labeler also labels each policy with

an overall letter grade, which depends on the classifications. More specifically, the grade is de-

termined by the number of points,p, a policy is assigned. For collection, profiling, ad tracking,

and ad disclosure a policy receives one minus point, respectively. However, for not allowing one

of these practices a policy receives one plus point. However, a policy receives a plus point for

featuring limited retention or encryption, respectively. As most policies in the training set had

zero points, zero points is the mean and grades are assigned as follows:

• A (above average overall privacy) ifp > 1;

• B (average overall privacy) if1 ≤ p ≥ −1;

• C (below average overall privacy) ifp < −1.
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Figure 5.3: Privee extension screenshot and detailed label view. The result of the privacy policy

analysis is shown to the user in a pop-up.

After the points are assigned to a policy, the corresponding label is displayed to the user

as shown in Figure 5.3. In order to avoid confusion about the meaning of icons [146], short

descriptions were used instead. The text in the pop-up is animated. If the user moves the mouse

over it, further information is provided. The user can also find more detailedexplanations about

the categories and the grading by clicking on the blue ”Learn More” link at the bottom of the

label. It should be noted that analysis results retrieved from ToS;DR usually differ in content from

the classification results, and are, consequently, displayed in a different label format. The scheme

introduced here should be understood as a proof of concept. There isno consensus on the selection

of practices to display or the labels to use. Especially, it can be argued thata letter grading scheme

incorrectly implies that the described practices are comparable, which in actuality might not be

the case.

5.3 Experimental Results

Privee was run on a test set of 50 policies. Before this test phase the MLclassifier was trained

(with the 100 training policies that are included in the extension package) andtuned it (with a

validation set of 50 policies). During the training, validation, and test phases the retrieval of

crowdsourcing results was disabled. Consequently, the experimental results only refer to rule

and ML classification. The policies of the test and validation sets were selected according to

the same criteria as described for the training set in Section 5.2.5. In this section I first discuss

the classification performance (Section 5.3.1), then the gold standard that Iused to measure the
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performance (Section 5.3.2), and finally the computational performance (Section 5.3.3).

5.3.1 Classification Performance

In the validation phase I experimented with different classifier configurations for each of the six

classification tasks. For the ad tracking and profiling categories the combination of the rule and

ML classifier lead to the best results. However, for collection, limited retention, and ad disclosure

the ML classifier on its own was preferable. Conversely, for the encryption category the rule clas-

sifier on its own was the best. It seems that the language used for describing encryption practices is

often very specific making the rule classifier the first choice. Words suchas “ssl” are very distinc-

tive identifiers for encryption provisions. Other categories use more general language that could

be used in many contexts. For example, phrases related to time periods must not necessarily refer

to limited retention. For those instances the ML classifier seems to perform better. However, if

categories exhibit both specific and general language the combination of the rule and ML classifier

is preferable.

The results of the extension’s privacy policy analysis are based on the processing of natural

language. However, as natural language is often subject to differentinterpretations, the question

becomes how the results can be verified in a meaningful way. Commonly appliedmetrics for veri-

fying natural language classification tasks are accuracy (Acc.), precision (Prec.), recall (Rec.), and

F-1 score (F-1). Accuracy is the fraction of classifications that are correct [187]. Precision is the

fraction of retrieved documents that are relevant, and recall is the fraction of relevant documents

that are retrieved[187]. Precision and recall are often combined in their harmonic mean, known

as the F-1 score[147].

In order to analyze the extension’s performance I calculated the accuracy, precision, recall, and

F-1 score for the test policy set classifications. Table 5.1 shows the overall performance and the

performance for each classification category. I also calculated the baseline accuracy (Base.) for

comparison against the actual accuracy. The baseline accuracy for each category was determined

by always selecting the classification corresponding to the annotation that occurred the most in

the training set annotations, which I report in Figure 5.4. The baseline accuracy for the overall

performance is the mean of the category baseline accuracies. Because the classification of privacy

policies is a multi-label classification task I calculated the overall results basedon the method for
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Figure 5.4: Annotation of positive cases in percent for the 50 test policies (blue) and the100

training policies (white).

measuring multi-label classifications given by Godbole and Sarawagi[131]. According to their

method, for each document,dj in setD, let tj be the true set of labels andsj be the predicted set

of labels. Then, the means is obtained by

Acc(D) =
1

|D|

∑|D|

i=1

|tj ∩ sj |

|tj ∪ sj |
, (5.3)

Prec(D) =
1

|D|

∑|D|

i=1

|tj ∩ sj |

|sj |
, (5.4)

Rec(D) =
1

|D|

∑|D|

i=1

|tj ∩ sj |

|tj |
, (5.5)

F − (D) =
1

|D|

∑|D|

i=1

2 Prec(dj)Rec(dj)

(Prec(dj) +Rec(dj))
. (5.6)

From Table 5.1 it can be observed that the accuracies are at least as good as the corresponding

baseline accuracies. For example, in the case of limited retention the baseline classifies all policies

as not providing for limited retention because, as show in Figure 5.4, only 29% of the training

policies were annotated as having a limited retention period, which would lead to aless accurate
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Base. Acc. Prec. Rec. F-1

Overall 68% 84% 94% 89% 90%

Collection 100% 100% 100% 100% 100%

Encryption 52% 98% 96% 100% 98%

Ad Tracking 64% 96% 94% 100% 97%

L. Retention 74% 90% 83% 77% 80%

Profiling 52% 86% 100% 71% 83%

Ad

Disclosure

66% 76% 69% 53% 60%

Table 5.1:Privee extension performance overall and per category. For the 300 test classifications

(six classifications for each of the 50 test policies) I observed 27 misclassifications. 154 classi-

fications were made by the rule classifier and 146 by the ML classifier. Therule classifier had

11 misclassifications (2 false positives and 9 false negatives) and the ML classifier had 16 mis-

classifications (7 false positives and 9 false negatives). It may be possible todecrease the number

of false negatives by adding more rules and training examples. For the ad tracking category the

rule classifier had an F-1 score of 98% and the ML classifier had an F-1 score of 94%. For the

profiling category the rule classifier had an F-1 score of 100% and the MLclassifier had an F-1

score of 53%. 28% of the policies received a grade of A, 50% a B, and 22% a C.

classification of 74% in the test set compared to the actual accuracy of 90%. For the collection

category it should be noted that there is a strong bias because nearly every policy allows the

collection of personal information. However, in the validation set included twopolicies that did

not allow this practice, but still were correctly classified by the extension. Generally, the F-1

performance results fall squarely within the range reported in the earlier works. For identifying

law enforcement disclosures Ammar et Al.[32] achieved an F-1 score of 76% and Costante et

al. reported a score of 83% for recognizing types of collected information[68] and 92% for

identifying topics discussed in privacy policies[69].

In order to investigate the reasons behind the extension’s performance Iused two binary logis-

tic regression models. Binary logistic regression is a statistical method for evaluating the depen-
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dence of a binary variable (the dependent variable) on one or more other variables (the indepen-

dent variable(s)). In the first model each of the 50 test policies was represented by one data point

with the dependent variable identifying whether it had any misclassification and the independent

variables identifying (1) the policy’s length in words, (2) its mean Semantic Diversity (SemD)

value[144], and (3) whether there was any disagreement among the annotators in annotating the

policy (Disag.). In the second model I represented each of 185 individual test classifications by

one data point with the dependent variable identifying whether it was a misclassification and the

independent variables identifying (1) the length (in words) of the text thatthe rule classifier or

ML preprocessor extracted for the classification, (2) the text’s mean SemDvalue, and (3) whether

there was annotator disagreement on the annotation corresponding to the classification.

Hoffman et al.’s[144] SemD value is an ambiguity measure for words based on latent semantic

analysis, that is, the similarity of contexts in which words are used. It can range from 0 (highly

unambiguous) to 2.5 (highly ambiguous). I represented the semantic diversity of a document

(i.e., a policy or extracted text) by the mean SemD value of its words. However,as Hoffman

et al. only provide SemD values for words on which they had sufficient analytical data (31,739

different words in total), some words could not be taken into account forcalculating a document’s

mean SemD value. Thus, in order to avoid skewing of mean SemD values only documents that

had SemD values for at least 80% of their words were considered. In thefirst model all test

policies were above this threshold. However, in the second model some of the 300 classifications

were excluded. Particularly, all encryption classifications were excluded because words, such as

“encryption” and “ssl” occurred often and had no SemD value. Also, in the second model the

mean SemD value of an extracted text was calculated after stemming its words with the Porter

stemmer and obtaining the SemD values for the resulting word stems (while the SemD value of

each word stem was calculated from the mean SemD value of all words that have the respective

word stem).

For the first model the analysis results are shown in Table 5.2 and for the second model in

Table 5.3. Figure 5.5 shows the distribution of mean SemD values for the extracted texts in the

second model. Using the Wald test, I evaluated the relationship between an independent vari-

able and the dependent variable through the P value relating to the coefficient of that independent

variable. If the P value is less than 0.05, the null hypothesis, i.e., that that coefficient is zero, is re-
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Per Policy Length SemD Disag.

Mean 2873.4 2.08 0.6

Significance (P) 0.64 0.74 0.34

Odds Ratio (Z) 1.15 1.11 0.54

95%

Confidence

Interval (Z)

0.64-

2.08

0.61-

2.01

0.16-

1.89

Table 5.2:Results of the first logistic regression model. The Nagelkerke pseudoR2 is 0.03 and the

Hosmer and Lemeshow value 0.13.

Per Extr. Text Length SemD Disag.

Mean 37.38 1.87 0.17

Significance (P) 0.22 0.02 0.81

Odds Ratio (Z) 0.58 2.07 0.86

95% Confidence

Interval (Z)

0.24-

1.38

1.12-

3.81

0.25-

2.97

Table 5.3:Results of the second logistic regression model. The Nagelkerke pseudoR2 is 0.11 and

the Hosmer and Lemeshow value 0.051.

jected. Looking at the results, it is noteworthy that both models do not reveal a statistically relevant

correlation between the annotator disagreements and misclassifications. Thus, a document with a

disagreement did not have a higher likelihood of being misclassified than onewithout. However,

it is striking that the second model has a P value of 0.02 for the SemD variable.Standardizing the

data points into Z scores and calculating the odds ratios it becomes clear that an increase of the

mean SemD value in an extracted text by 0.17 (one standard deviation) increased the likelihood

of a misclassification by 2.07 times (odds ratio). Consequently, the second model shows that the

ambiguity of text in privacy policies, as measured by semantic diversity, hasstatistical significance

for whether a classification decision is more likely to succeed or fail.
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Figure 5.5: Mean SemD value distribution for the 185 extracted texts. The standard deviation is

0.17.

Besides evaluating the statistical significance of individual variables, I also assessed the overall

model fit. While the goodness of fit of linear regression models is usually evaluated based on the

R2 value, which measures the square of the sample correlation coefficient between the actual

values of the dependent variable and the predicted values (in other words, theR2 value can be

understood as the proportion of the variance in a dependent variable attributable to the variance in

the independent variable), there is no consensus for measuring the fit of binary logistic regression

models. Various pseudoR2 metrics are discussed. I used the Nagelkerke pseudoR2 because it can

range from 0 to 1 allowing an easy comparison to the regularR2 (which, however, has to account

for the fact that the Nagelkerke pseudoR2 is often substantially lower than the regularR2). While

the Nagelkerke pseudoR2 of 0.03 for the first model indicates a poor fit, the value of 0.11 for

the second model can be interpreted as moderate. Further, the Hosmer andLemeshow test, whose

values were over 0.05 for both of the models, demonstrates the model fit as well.

In addition to the experiments just discussed, the models were also evaluated with further

independent variables. Specifically, I evaluated the first model with the policy publication year, the

second model with the extracted texts’ mean tf-idf values, and both models with Flesch-Kincaid

readability scores as independent variables. Also, using only ML classifications I evaluated the

second model with the number of available training examples as independent variable. Only for the

latter I found statistical significance at the 0.05 level. The number of training examples correlated

to ML classification performance, which confirms Ammar et al.’s respectiveconjecture[32]. The

more training examples the ML classifier had, the less likely a misclassification became.
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5.3.2 Inter-annotator Agreement

Having discussed the classification performance, I now turn to the gold standard that was used to

measure that performance. For the performance results to be reliable the gold standard must be

reliable. One way of producing a gold standard for privacy policies is to ask the providers whose

policies are analyzed to explain their meaning[16]. However, this approach should not be used, at

least in the U.S., because the Restatement of Contracts provides that a contract term is generally

given the meaning thatall parties associate with it (Restatement (Second) of Contracts,§201).

Consequently, policies should be interpreted from the perspective of both the provider and user.

The interpretation would evaluate whether their perspectives lead to identical meanings or, if that

is not the case, which one should prevail under applicable principles of legal interpretation. In

addition, since technical terms are generally given technical meaning (Restatement (Second) of

Contracts,§202(3)(b)), it would be advantageous if the interpretation is performed by annotators

familiar with the terminology commonly used in privacy policies. The higher the number of

annotations on which the annotators agree, that is, the higher the inter-annotator agreement, the

more reliable the gold standard will be.

Because the annotation of a large number of documents can be very laborious, it is sufficient

under current best practices for producing a gold standard to measure inter-annotator agreement

only on a data sample[210], such that it can be inferred that the annotation of the remainder doc-

uments is reliable as well. Following this practice, I only measured the inter-annotator agreement

for the test set, which would then provide an indicator for the reliability of the training and vali-

dation set annotation as well. To that end, I annotated all policies and additional annotations were

obtained for the test policies from two other annotators. All annotators worked independently from

each other. As the author who annotated the policies studied law and has expertise in privacy law

and the two other annotators were law students with training in privacy law, allannotators were

considered equally qualified, and the annotations for the gold standard were selected according to

majority vote (i.e., at least two annotators agreed). After the annotations of the test policies were

made, I ran the extension on these policies and compared its classifications to the annotations,

which gave the results in Table 5.1.

The reliability of the gold standard depends on the degree to which the annotators agreed on

the annotations. There are various measures for inter-annotator agreement. One basic measure
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Disag. %

Ag.

K.’s α/F.’sκ

Overall 8.12 84% 0.77

Collection 0 100% 1

Encryption 6 88% 0.84

Ad Tracking 7 86% 0.8

L. Retention 9 82% 0.68

Profiling 11 78% 0.71

Ad Disclosure 16 68% 0.56

Table 5.4:Inter-annotator agreement for the 50 test policies. The values for Krippendorff ’sα and

Fleiss’κ are identical.

is the count of disagreements. Another one is the percentage of agreement (% Ag.), which is

the fraction of documents on which the annotators agree[37]. However, disagreement count and

percentage of agreement have the disadvantage that they do not account for chance agreement.

In this regard, chance-corrected measures, such as Krippendorff’s α (K.’s α) [172] and Fleiss’κ

(F.’s κ) [124] are superior. For Krippendorff’sα and Fleiss’κ the possible values are constrained

to the interval[−1; 1], where 1 means perfect agreement,−1 means perfect disagreement, and 0

means that agreement is equal to chance[87]. Generally, values above 0.8 are considered as good

agreement, values between 0.67 and 0.8 as fair agreement, and values below 0.67 as dubious[187].

However, those ranges are only guidelines[37]. Particularly, ML algorithms can tolerate data with

lower reliability as long as the disagreement looks like random noise[225].

Based on the best practices and guidelines for interpreting inter-annotator agreement measure-

ments, the results in Table 5.4 confirm the general reliability of the annotations and, consequently,

of the gold standard. For every individual category, except for the ad disclosure category Krip-

pendorff’sα values indicated fair or good agreement. In addition, the overall mean agreement

across categories is 0.77, and, therefore, provides evidence for fair overall agreement as well. For

the overall agreement it should be noted that, corresponding to the multi-label classification task,

the annotation of privacy policies is a multi-label annotation task as well. However, there are
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Per Policy Length SemD Flesch-

K.

Mean 2873.4 2.08 14.53

Significance (P) 0.2 0.11 0.76

Odds Ratio (Z) 1.65 1.87 1.12

95%

Confidence

Interval (Z)

0.78-

3.52

0.87-4 0.55-

2.29

Table 5.5: Results of the third logistic regression model. The Nagelkerke pseudoR2 is 0.19 and

the Hosmer and Lemeshow value 0.52.

Figure 5.6: Mean SemD value distribution for the 240 policy sections. The standard deviation is

0.03.

only very few multi-label annotation metrics, such as Passonneau’s Measuring Agreement on Set-

valued Items (MASI)[209]. As none of the metrics were suitable for the purposes here I selected

as overall metric the mean over the results of the individual classification categories.

Inter-annotator agreement results were investigated by applying a third and fourth binary lo-

gistic regression model. In the third model each of the 50 test policies was represented by one data

point with the dependent variable identifying whether the annotators had any disagreement in an-

notating the policy and the independent variables identifying (1) the policy’slength in words, (2)

its mean SemD value, and (3) its Flesch-Kincaid score. In the fourth model each of 240 individual

annotations is represented by one data point with the dependent variable identifying whether the

annotators disagreed for that annotation and the independent variablesidentifying (1) the length
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Per Section Length SemD Flesch-

K.

Mean 306.76 2.08 15.59

Significance (P) 0.29 0.04 0.49

Odds Ratio (Z) 1.18 1.51 0.86

95%

Confidence

Interval (Z)

0.87-

1.6

1.02-

2.22

0.56-

1.32

Table 5.6:Results of the fourth logistic regression model. The Nagelkerke pseudoR2 is 0.05 and

the Hosmer and Lemeshow value 0.83.

(in words) of the policy text section that the annotation is referring to, (2) the section’s mean SemD

value, and (3) its Flesch-Kincaid score. For the fourth model some of the 300 annotations were

excluded because not every policy had a section for each category. For example, some policies

did not discuss advertisement or disclosure of information. The Flesch-Kincaid readability score

measures the number of school years an average reader would need tounderstand a text.

For the third and fourth model analysis results are shown in Table 5.5 and 5.6, respectively.

Figure 5.6 shows the distribution of mean SemD values for the policy sections in the fourth model.

Both models were significant, as indicated by their Nagelkerke and Hosmer and Lemeshow val-

ues. The results confirm that the readability of policies, as measured by theFlesch-Kincaid score,

does not impact their comprehensibility[191]. In the third model I was unable to identify any

statistically relevant variables (although, semantic diversity and length may bestatistically signif-

icant in a larger data set). However, the fourth model proved to be more meaningful. Remarkably,

corresponding to the finding in Section 5.3.1, according to which classifier performance corre-

lates to semantic diversity, the statistically relevant P value of 0.04 for the mean SemD variable

also indicates a correlation of inter-annotator agreement to semantic diversity. Standardizing the

data points into Z scores and calculating the odds ratios it becomes clear that an increase of the

mean SemD value of a section by 0.03 (one standard deviation) increased thelikelihood of a dis-

agreement by 1.51 times (odds ratio). It is astounding that even qualified annotators trained in
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privacy law had difficulties to avoid disagreements when semantic diversity increased to slightly

above-mean levels.

While neither the first nor the second model in Section 5.3.1 showed a correlation between

inter-annotator agreement and classifier performance, the results for the second and fourth model

demonstrate that performance and agreement both correlate to one common variable—semantic

diversity. More specifically, performance correlates to the semantic diversity of extracted text

phrases and agreement correlates to the semantic diversity of policy sections. This result suggests,

for example, that the relatively high number of misclassifications and disagreements in the ad

disclosure category is inherent in the nature of the category. Indeed, incases of fuzzy categories

disagreements among annotators do not necessarily reflect a quality problem of the gold standard,

but rather a structural property of the annotation task, which can serveas an important source of

empirical information about the structural properties of the investigated category [24]. Thus, it is

no surprise that for all six categories the values of Krippendorff’sα correlate to the F-1 scores. The

higher the value of Krippendorff’sα, the higher the F-1 score. Figure 5.7 shows the correlation.

As both classifier performance and inter-annotator agreement decrease with an increase in se-

mantic diversity, the practicability of the notice and choice principle becomes questionable. After

all, privacy policies can only provide adequate notice (and choice) if theyare not too ambiguous.

In order to further examine policy ambiguity I calculated the mean SemD value forthe test policies

over time. The test set analysis exhibited a statistically significant trend of decreasing semantic

diversity with a P value of 0.049. Figure 5.8 illustrates the approach taken here. There are two

possible explanations for the decrease over time. First, it could be a consequence of the FTC’s

enforcement actions and its call for policies to “be clearer, shorter, andmore standardized”[110].

Second, we might be in the midst of a consolidation process leading to more standardized policy

language. As de Maat et al[80] observed, drafters of legal documents tend to use language that

adheres to writing conventions of earlier texts and similar statements. Independent of the reason,

the result suggests that the notice and choice principle may overcome the problem of ambiguity

over time.
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Figure 5.7: Linear regression plot with the F-1 score as dependent variable and Krippendorff ’sα

as independent variable. The coordinate labels identify the categories: AD= Ad Disclosure, LR

= Limited Retention, P = Profiling, AT = Ad Tracking, E = Encryption, and C = Collection. With

anR2 value of 0.83 the model has an excellent fit, which, however, should be interpreted in light

of the small number of data points.

5.3.3 Computational Performance

The extension’s computational performance allows a real-time analysis. Table 5.7 shows the mean

duration in seconds for obtaining analysis results for each of 50 randomlyselected policies from

ToS;DR (Crowdsourcing), processing each of the 50 test policies (Classifier), and processing each

of the 50 test policies each with initial training (Training). Notably, retrieving policy results from

ToS;DR is twice as fast as analyzing a policy with the classifiers.

5.4 Conclusion

In order to improve privacy transparency I developed Privee—a system to automatically analyze

privacy policies. Based on ML algorithms Privee analyzes policy text andreturns a label with the

most important information allowing Internet users to gain a fast understanding of essential policy

terms. Interestingly, experimental results reveal that the automatic classification of privacy policies

encounters the same constraint as human policy interpretation—the ambiguity of natural language,

as measured by semantic diversity. Such ambiguity seems to present an inherent limitation of what

automatic privacy policy analysis can accomplish. Thus, on a more fundamental level, the viability

of the notice and choice principle might be called into question altogether. However, based on the
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Figure 5.8: Linear regression plot for Symantec’s privacy policy (which was part of the test set)

with the mean SemD value of a policy version as dependent variable and thepolicy version number

as independent variable. The first version of Symantec’s policy datesback to August 5, 1999, and

the eleventh version was adopted on August 12, 2013. The mean SemD value of Symantec’s

privacy policy decreased from 2.1 in the first version to 2.06 in the eleventh version as shown. A

similar decrease occurred for 29 out of 44 test policies (6 of the test policies were only available in

a single version and, therefore, could not be included in the analysis. However, for the 44 included

policies there were on average 8 different versions over time.).

presented indicators for a decrease of policy ambiguity over time I would caution to draw such

conclusion, and I remain optimistic that the current notice and choice ecosystem is workable.

I believe that over time conventional language will develop that will make the meaning of

many privacy policy provisions much clearer. As de Maat et al.[80] observed, drafters of legal

documents tend to use language that adheres to writing conventions of earlier texts and similar

information is usually expressed in syntactically similar statements. The FTC’s call for privacy

policies to “be clearer, shorter, and more standardized”[110] coupled with its enforcement power

will likely also lead to a decrease in ambiguity. As anecdotal evidence servesGoogle’s privacy

policy whose mean SemD value decreased throughout the years from 2.1 inthe year 1999 to 2.04

in 2013. Privacy policy crowdsourcing can supplement this developmentby providing a forum for

identifying, discussing, and resolving ambiguities.

While Privee is the first architecture for automatically analyzing privacy policies, much more

work remains to be done: What are the types of information that policies should be analyzed for?

What is the most usable design for displaying the analysis results? What arethe best features and
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Per

Policy

CrowdsourcingClassifier Training

Mean 0.39 sec 0.78 sec 20.29

sec

Table 5.7:Computational performance of the Privee extension. The performance was evaluated

on a Windows laptop with Intel Core2 Duo CPU at 2.13 GHz with 4 GB RAM. The space require-

ments for the installation on the hard disk are 2.11 MB (including 1.7 MB of trainingdata and

286 KB for the jQuery library) and additional 230 KB during the program execution for storing

training results.

algorithms to train a privacy policy classifier? How can the interaction betweenthe classifier and

crowdsourcing analysis be improved? In particular, how can a programconnect to many crowd-

sourcing repositories, and, possibly, decide which analysis is the best? Can crowdsourced policy

results be fed into the classifier as training data? How can it be assured thatthe crowdsourcing

results are always up to date? What are other ways to exploit the semantic diversity metric? And,

finally, how can the whole architecture be made workable in the mobile world?
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Chapter 6

Bridging the Gap between Notices and

Actual Practices

Snapchat does “not ask for, track, or access any location-specificinformation.” This is what

Snapchat’s privacy policy stated.1 However, Snapchat’s Android app transmitted Wi-Fi- and cell-

based location data from users’ devices to analytics service providers.These discrepancies re-

mained undetected before they eventually surfaced when a researcherexamined Snapchat’s data

deletion mechanism. His report was picked up by the Electronic Privacy Information Center and

brought to the attention of the FTC, which launched a formal investigation requiring Snapchat to

implement a comprehensive privacy program.2

The case of Snapchat illustrates that mobile apps are often deviating from their privacy poli-

cies. However, any inconsistencies can have dire consequences as the as they may lead to enforce-

ment actions by the FTC and other regulators. This is especially true if discrepancies continue to

exist for many years, which was the case for Yelp’s collection of childrens’ information.3 These

findings do not only demonstrate that regulators could benefit from a system that helps them iden-

tifying privacy requirement inconsistencies, but also that it would be a useful tool for companies

to assess their privacy compliance as part of the software development process. This would be

1Complaint In the Matter of Snapchat, Inc. (December 31, 2014).

2Decision and Order In the Matter of Snapchat, Inc. (December 31, 2014).

3United States of America v. Yelp, Inc. (September 17, 2014).
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valuable because researchers found that privacy violations often appear to be based on developers’

difficulties in understanding privacy requirements[44] rather than on malicious intentions. Thus,

for example, tools that automatically detect and describe third-party data collection practices may

be helpful for developers[44]. Consequently, it is a major motivation of my work to help compa-

nies identifying red flags before they develop into serious and contentiousprivacy problems.

On various occasions, the FTC, which is responsible for regulating consumer privacy on the

federal level, voiced dissatisfaction with the current state of apps’ privacy compliance. Three

times the FTC manually surveyed childrens’ apps for privacy law compliance[108; 109; 118]

and concluded that the “results of the survey are disappointing”[109]. Deviating from mandatory

provisions, many publishers of childrens’ apps did not disclose what types of data they collect, how

they make use of the data, and with whom the data is shared[109]. A similar examination of 121

shopping apps revealed that many privacy policies are vague and fail toconvey how apps actually

handle consumers’ data[114]. Given that the FTC limited its investigations to a small sample

of apps, a presumably large number of discrepancies between apps andtheir privacy policies

remained undetected. However, the FTC and other regulators have difficulty to achieve scale in

their compliance checks. In this regard, I believe that the system can be leveraged by regulators to

substantially increase the scope of their analyses.

In this chapter I present a privacy analysis system for Android that checks data practices of

apps against privacy requirements derived from their privacy policies and selected laws. The

work here enables app publishers to identify potentially privacy-invasive practices in their apps

before they are published. Moreover, the work can also aid governmental agencies, such as the

FTC, to achieve a systematic enforcement of privacy laws on a large scale. App store owners,

researchers, and privacy advocates alike might also derive value from the approach presented here.

My main contribution consists of the novel combination of machine learning and static analysis

techniques to analyze apps’ compliance with privacy requirements. However, I want to emphasize

that this dissertation does not claim to resolve challenges in the individual techniques beyond what

is necessary for the purposes here. This holds especially true for the static analysis of mobile apps

and its many unresolved problems, for example, in the analysis of obfuscated code.
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Privacy Notice and Choice

Implementation 

Notices

* Android/Device ID, MAC, IMEI, 

   Google Advertising and Client IDs

** GPS, Cell Tower, Wi-Fi

*** E-Mail, Phone Number

Notices

Figure 6.1: Per the defined privacy requirements, apps that process Personally Identifiable In-

formation (PII) need to (1) have a privacy policy, (2-3) include notices about policy changes and

access, edit, and deletion rights in their policy, (4-6) notify users of data collection practices, and

(7-9) disclose how data is shared with third parties. The notice requirements for policy changes

and access, edit, and deletion are satisfied by including the notices in the policies while the col-

lection and sharing practices must be also implemented in the apps.

6.1 Privacy Policy Analysis

This section will discuss the automated large-scale ML analysis of privacy policies. It will first

detail the law on privacy notice and choice (§ 6.1.1), then explain the check how many apps have

a privacy policy (§ 6.1.2), and finally analyze the policy content (§ 6.1.3).

6.1.1 Notice and Choice

The privacy requirements are derived from apps’ privacy policies and selected laws. Figure 6.1

provides an overview of the law on notice and choice and the nine privacyrequirements that are

analyzed (Privacy Policy Requirement, NPC, NAED, CID, CL, CC, SID,SL, SC). If an app does

not adhere to a privacy requirement—by implementing a practice that is not covered in its policy—

or if the app’s policy does not notify users of policy changes and access, edit, and deletion rights,

it is defined that a privacy requirement inconsistency occurs (which is also referred to to as non-
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compliance). In this regard, it should be cautioned that such inconsistency does not necessarily

mean that a law is violated. First, not all privacy requirements might be applicable to all apps.

Second, the system is based on a particular interpretation of the law. While I believe that the

interpretation is sound and in line with the enforcement actions of the FTC and other regulatory

agencies, reasonable minds may differ.4 Third, the system makes is based on machine learning

and static analysis and, thus, by its very nature errors can occur.

As to the individual privacy requirements, there is no generally applicablefederal statute de-

manding privacy policies for apps. However, California and Delaware enacted comprehensive on-

line privacy legislation that effectively serves as a national minimum privacy threshold given that

app publishers usually do not provide state-specific app versions or exclude California or Delaware

residents. In this regard, the California Online Privacy Protection Act of2003 (CalOPPA) requires

online services that collect PII to post a policy.5 The same is true according to Delaware’s Online

Privacy and Protection Act (DOPPA).6 In addition, the FTC’s Fair Information Practice Principles

(FTC FIPPs) call for consumers to be given notice of an entity’s information practices before any

PII is collected[106]. Further, the Children’s Online Privacy Protection Act of 1998 (COPPA)

makes policies mandatory for apps directed to or known to be used by children.7 Thus, the exis-

tence of a privacy policy is treated as a privacy requirement.

CalOPPA and DOPPA further demand that privacy policies describe the process by which

users are notified of policy changes.8 COPPA also requires description of access, edit, and deletion

rights.9 Under the FTC FIPPs[106] as well as CalOPPA and DOPPA those rights are optional.10

I concentrate the analysis on a subset of data types that are, dependingon the context, legally

protected: device IDs, location data, and contact information. App publishers are required to

4I am focusing on the U.S. legal system as I am most familiar with it. However, in principle, the techniques are applicable to any

country with a privacy notice and choice regime.

5Cal. Bus. & Prof. Code§22575(a).

6Del. Code Tit. 6§1205C(a).

716 CFR§312.4(d).

8Cal. Bus. & Prof. Code§22575(b)(3), Del. Code Tit. 6§1205C(b)(3).

916 CFR§312.4(d)(3).

10Cal. Bus. & Prof. Code§22575(b)(2), Del. Code Tit. 6§1205C(a).
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disclose the collection of device IDs (even when hashed) and location data.11 Device IDs and

location data are also covered by CalOPPA12 and for children apps according to COPPA13 The

sharing of these types of information with third parties requires consent aswell.14 Similarly,

contact information, such as e-mail addresses, may be protected.15

It should be noted that ad identifiers are interpreted to be personal information since they

can be used to track users over time and across devices. It is also assumed that a user did not

opt out of ads (because otherwise no ad identifiers would be sent to opted out ad networks). I

further interpret location data to refer to GPS, cell tower, or Wi-Fi location.I assume applicability

of the discussed laws and perform the analysis based on the guidance provided by the FTC and

the California Attorney General in enforcement actions and recommendations for best practices

(e.g.,[106] and[61]). Specifically, I interpret the FTC actions as disallowing the omission of data

practices in policies and assume that silence on a practice means that it does not occur.16 Finally,

I assume that all apps in the U.S. Play store are subject to CalOPPA and DOPPA.17 I believe this

assumption is reasonable as I am not aware of any U.S. app publisher excluding California or

Delaware residents from app use or providing state-specific app versions.

6.1.2 Privacy Policy Requirement

To assess whether apps fulfill the requirement of having a privacy policy I crawled the Google Play

store (February 2016) and downloaded a sample (n = 17, 991) of free apps (full app set).18 The

crawl was started with the most popular apps and followed random links on their Play store pages

to other apps. I included all categories in the crawl, however, excluded Google’s Designed for

Families program (as Google already requires apps in this program to havea policy) and Android

11In the Matter of Nomi Technologies, Inc. (September 3, 2015).

12Cal. Bus. & Prof. Code§22577(a)(6) and (7)[61].

1316 CFR§312.2(7) and (9).

14Complaint In the Matter of Goldenshores Technologies, LLC, and Erik M. Geidl (April 9, 2014).

15Complaint In the Matter of Snapchat, Inc. (December 31, 2014).

16Complaint In the Matter of Snapchat, Inc. (December 31, 2014).

17Cal. Bus. & Prof. Code§§22575–22579, Del. Code Tit. 6§1205C.

18Whenever the Google Play store is referred to it is its U.S. site. Also, details on the various app and policy sets that are used are

described in the appendix.
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52%

48%

0

9,295

17,991

Apps have Policy Link

No

Yes 71%

17%

12%

0

6,198

7,676

8,696

Apps need Policy

No (Have Policy Elsewhere)

No (PII is not processed)

Yes

Figure 6.2: I analyze 17,991 free apps, of which 9,295 (52%) link to their privacy policyfrom the

Play store (left). Out of the remaining apps, 6,198 (71%) appear to lack a policy while engaging

in at least one data practice (i.e., PII is processed) that would require them to have one (right).

Wear (as the focus is on mobile apps). It is assumed that the sample is representative in terms

of app categories, which was confirmed with a two-sample Kolmogorov-Smirnov goodness of fit

test (two-tailed) against a sample of a million apps[203]. It was not possible to reject the null

hypothesis that both were drawn from the same distribution (i.e., p> 0.05). However, while the

Play store hosts a long tail of apps that have fewer than 1K installs (56%)[203], the sample focuses

on more popular apps as it only includes 3% of such fewer installed apps.

Privacy Policy Requirement Inconsistencies.Out of all policies in the full app setn = 9, 295

apps provided a link to their policy from the Play store (full policy set) andn = 8, 696 apps lacked

such. As shown in Figure 6.2, the results suggest that 71% (6,198/8,696)apps without a policy

link are indeed not adhering to the policy requirement. These app store privacy policy links can be

used as proxies for actual policies, which is reasonable since regulators requested app publishers

to post such links[111; 61] and app store owners obligated themselves to provide the necessary

functionality [60]. The apps in the full app set were offered by a total of 10,989 publishers, and

their app store pages linked to 6,479 unique privacy policies.

71% is achieved after making two adjustments. First, if an app does not have apolicy it is not

necessarily non-compliant with the policy requirement. After all, apps that are not processing PII

are not obligated to have a policy. Indeed, since I found that 12% (1,020/8,696) of apps are not

processing PII, I accounted for those apps. Second, despite the regulators’ requests to post policy

links in the Play store, some app publishers may still decide to post their policy elsewhere (e.g.,

inside their app). For that purpose I randomly examined 40 apps from the full app set that did not
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Figure 6.3: A linear regression model with the last app update year as independent variable

and the percentage of apps without a policy link as dependent variable givesr2 = 0.79 (top).

In addition, a polynomial regression model using the number of installs asindependent variable

results in a multipler2 = 0.9 (bottom).

have a policy link in the Play store but processed PII. I found that 83% (33/40) do not seem to have

a policy posted anywhere (with a Clopper-Pearson confidence interval(CI) ranging from 67% to

93% at the 95% level based on a two-tailed binomial test).19 Thus, accounting for an additional

17% (1,478/8,696) of apps having a policy elsewhere leaves us with100%− 12%− 17% = 71%

out ofn = 8, 696 apps appearing to be non-compliant with the policy requirement.

Predicting Privacy Policy Requirement Inconsistencies.As it appears that apps with frequent

updates typically have a policy, this hypothesis was evaluated on the full appset using Pearson’s

chi-square test of independence. Specifically, it is the null hypothesis that whether an app has

a policy is independent from the year when it was most recently updated. As the test returns p

≤ 0.05, the null hypothesis can be rejected at the 95% confidence level. Indeed, as shown in the

linear regression model of Figure 6.3, apps with recent update years have more often a policy than

those that were updated longer ago. In addition to an app’s update year there are other viable

predictors as well. As shown in the polynomial regression model of Figure 6.3 the number of

19Except otherwise noted, all CIs in this paper are based on a two tailed binomial test and the Clopper-Pearson interval at the 95%

level.
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installs is insightful (p≤ 0.05). Apps with high install rates have more often a policy than apps

with average install rates. Surprisingly, the same is also true for apps with lowinstall rates. An

explanation could be that those are more recent apps that did not yet gainpopularity. Indeed, apps

with low install rates are on average more recently updated than apps with medium rates. For

example, apps with 500 to 1K installs were on average updated on March 15,2015 while apps

with 50K to 100K installs have an average update date as of January 23, 2015.

Further, apps with an Editors’ Choice or Top Developer badge usually have a policy, which is

also true for apps that offer in-app purchases. It is further encouraging that apps with a content

rating for younger audiences often have a policy. Most apps for Everyone 10+ (75%), Teen (65%),

and Mature 17+ (66%) audiences have a policy while apps that have an Everyone rating (52%) or

are unrated (30%) often lack one.20 Further, various app categories are particularly susceptible for

not having a policy. Apps in the Comics (20%), Libraries & Demo (10%), Media & Video (28%),

and Personalization (28%) categories have particularly low policy penetration, as compared to an

average of 52% of apps having a policy across categories. Combining these predictors enables

us to zoom in to areas of apps that are unlikely to have a policy. For instance, in the Media &

Video category the percentage of apps with a policy decreases from 28%for rated apps to 12% for

unrated apps. A similar decrease occurs in the Libraries & Demo category from 10% to 8%.

6.1.3 Privacy Policy Content

Let us now move from examining whether an app has a policy to the analysis ofpolicy content.

As a basis for the evaluation manually created policy annotations are used.

6.1.3.1 Inter-annotator Agreement

For training and testing the classifiers the OPP-115 corpus[260] is leveraged—a corpus of 115

privacy policies annotated by ten law students that includes 2,831 annotations for the practices

discussed here. The annotations, which are described in detail in[260], serve as the ground-truth

for the ML classifiers (§ 6.1.3.3). Each annotator annotated a mean of 34.5 policies (median 35).

The annotations are selected according to majority agreement (i.e., two out ofthree annotators

agreed on it). As it is irrelevant from a legal perspective how often a practice is described in a

20The ratings are based on the categories of the Entertainment Software Rating Board (ESRB).
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Practice |Ann| Agpol % Agpol Fleisspol/Krippol

NPC 395 86/115 75% 0.64

NAED 414 80/115 70% 0.59

CID 449 92/115 80% 0.72

CL 326 85/115 74% 0.64

CC 830 86/115 75% 0.5

SID 90 101/115 88% 0.76

SL 51 95/115 83% 0.48

SC 276 85/115 74% 0.58

Table 6.1:The table shows absolute numbers of annotations (|Ann|) as well as various agreement

measures, specifically, absolute agreements (Agpol), percentage agreements (% Agpol), Fleiss’κ

(Fleisspol), and Krippendorff ’sα (Krippol). All agreement measures are computed on the full

corpus of 115 policies and on a per-policy basis (e.g., for 92 out of 115 policies the annotators

agreed on whether the policy allows collection of identifiers).

policy, it is measured whether annotators agree that a policy describes a given practice at least

once.

High inter-annotator agreement signals the reliability of the ground-truth on which classifiers

can be trained and tested. As agreement measures I use Fleiss’κ and Krippendorff’sα, which in-

dicate that agreement is good above 0.8, fair between 0.67 and 0.8, and doubtful below 0.67[187].

From the results in Table 6.1 it follows that the inter-annotator agreement forcollection and shar-

ing of device IDs with respective values of 0.72 and 0.76 is fair. However, it is below 0.67 for

the remaining classes. While results showing stronger agreement would have been clearer, the

annotations with the observed agreement levels can still provide reliable ground-truth as long as

the classifiers are not misled by patterns of systematic disagreement, which can be explored by

analyzing the disagreeing annotations[225].

To analyze whether disagreements contain systematic patterns I evaluate the number of each

annotator’s disagreements with the other two annotators. If he or she is in a minority position for

a statistically significant number of times, there might be a misunderstanding of theannotation

task or other systematic reason for disagreement. However, if there is no systematic disagreement,
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Figure 6.4: Analysis of disagreement among annotators for the different data practices with bino-

mial tests. Smaller p values mean fewer disagreements. If there are no disagreements, it is defined

p = 1. An annotator can be in the minority when omitting an annotation that the two otheran-

notators made (top) or adding an extra annotation (bottom). The results show few instances of

systematic disagreement. The numbers in parentheses show the average absolute disagreements

for the respective practices.

annotations are reliable despite low agreement levels[225].21 Assuming a uniform distribution

each annotator should be in the minority in 1/3 of all disagreements. I test this assumption with

the binomial test for goodness of fit. Specifically, I use the binomial distribution to calculate the

probability of an annotator beingx or more times in the minority by adding up the probability

of being exactlyx times in the minority, beingx + 1 times in the minority, up tox + n (that is,

being always in the minority), and comparing the result to the expected probability of 1/3. I use

a one-tailed test as it is not of interest to find whether an annotator is fewertimes in the minority

than in 1/3 of the disagreements.

As shown in Figure 6.4, there are only few cases with systematic disagreement. More specifi-

cally, for 7% (11/160) of disagreements there was statistical significance (p ≤ 0.05) for rejecting

the null hypothesis that the disagreements are equally distributed. We see that nearly half of the

21Arguably, low agreement levels present a problem from a legalperspective as there is no common interpretation of a respective

policy fragment.
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Practice Classifier Parameters
Base

(n=40)

Accpol

(n=40)

95% CI

(n=40)

Precneg

(n=40)

Recneg

(n=40)

F-1neg

(n=40)

F-1pos

(n=40)

Pos

(n=9,050)

NPC SVM RBF, weight 0.7 0.9 0.76–0.97 0.79 0.92 0.85 0.93 46%

NAED SVM linear 0.58 0.75 0.59–0.87 0.71 0.71 0.71 0.78 36%

CID Log. Reg. LIBL 0.65 0.83 0.67–0.93 0.77 0.71 0.74 0.87 46%

CL SVM linear 0.53 0.88 0.73–0.96 0.83 0.95 0.89 0.86 34%

CC Log. Reg. LIBL, L2, weight 0.8 0.88 0.73–0.96 0.71 0.63 0.67 0.92 56%

SID Log. Reg. LBFGS solver, L2 0.88 0.88 0.73–0.96 0.94 0.91 0.93 0.55 10%

SL SVM linear, weight 0.95 0.93 0.8–0.98 0.97 0.95 0.96 - 12%

SC SVM poly (4 degrees) 0.73 0.78 0.62–0.89 0.79 0.93 0.86 0.47 6%

Table 6.2: Classifiers, parameters, and classification results for the policy test set (n=40) and

the occurrence of positive classifications (Pos) in a set of n=9,050 policies (full app/policy set).

The best results were obtained by always setting the regularization constant to C = 1 and for

NPC, CC, and SL adjusting weights inversely proportional to class frequencies with scikit-learn’s

class_weight (weight). Except for the SL practice, all classifiers’ accuracies (Accpol) reached

the baseline (Base) of always selecting the most often occurring class in thetraining set.Precneg,

Recneg, and F-1neg are the scores for the negative classes (e.g., data is not collected or shared)

while F-1pos is the F-1 score for positive classes.

systematic disagreements occur for Gil. However, excluding Gil’s and otheraffected annotations

from the training set for the classifiers had only little noticeable effect. For some practices the

classification accuracy slightly increased, for others it slightly decreased. Thus, I believe that the

annotations are sufficiently reliable to serve as ground-truth for the classifiers. As other works

have already explored, low levels of agreement in policy annotations are common and do not nec-

essarily reflect their unreliability[224; 269]. In fact, different from the approach of analyzing

systematic annotation differences, it could be argued that an annotator’saddition or omission of

an annotation is not a disagreement with the others’ annotations to begin with.

1 def location_feature_extraction(policy):

2

3 location_keywords = [’geo’, ’gps’]

4 sharing_keywords = [’share’, ’partner’]

5 rel_sentences = ’’

6 features = ’’

7
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8 for sentence in policy:

9 for keyword in location_keywords:

10 if (keyword in sentence):

11 rel_sentences += sentence

12

13 tokens = word_tokenize(rel_sentences)

14 bigrams = ngrams(tokens,2)

15

16 for bigram in bigrams:

17 for keyword in sharing_keywords:

18 if (keyword in bigram):

19 features += bigram, bigram[0], bigram[1]

20

21 return features

Listing 6.1: Pseudocode for the sharing of location (SL).

6.1.3.2 Feature Selection

One of the most important tasks for correctly classifying data practices described in privacy poli-

cies is appropriate feature selection. Listing 6.1 shows a simplified example of the algorithm for

the location sharing practice. Using information gain and tf-idf I identified the most meaningful

keywords for each practice and created sets of keywords. One set of keywords refers to the data

type of the practices (e.g., for the location sharing practicegeo andgps) and is used to extract

all sentences from a policy that contain at least one of the keywords. Onthese extracted sen-

tences the algorithm is using a second set of keywords that refers to the actions of a data practice

(e.g., for the location sharing practiceshare andpartner) to create unigram and bigram feature

vectors[269]. Those feature vectors are then used to classify the practices. If no keywords are ex-

tracted, the classifier will select the negative class. The Porter stemmer is applied to all processed

text.

For finding the most meaningful features as well as for the subsequent classifier tuning nested

cross-validation with 75 policies separated into ten folds in the inner loop and 40 randomly se-

lected policies as held out test set (policy test set) was performed. The inner cross-validation was
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used to select the optimal parameters during the classifier tuning phase and the held out policy

test set for the final measure of classification performance. I stratified the inner cross-validation to

avoid misclassifications due to skewed classes. After evaluating the performance of the classifiers

with the policy test set I added the test data to the training data for the final classifiers to be used

in the large-scale analysis.

6.1.3.3 Classification

During the tuning phase I prototyped various classifiers with scikit-learn[211], a Python library.

Support vector machines and logistic regression had the best performance. I selected classification

parameters individually for each data practice.

Classifier Performance for Policy Test Set. The classification results for the policy test set,

shown in Table 6.2, suggest that the ML analysis of privacy policies is generally feasible. For

the negative classifications the classifiers achieveF-1neg scores between 0.67 and 0.96. These

scores are the most important measures for the task here because the identification of a privacy

requirement inconsistency demands that a practice occurring in an app isnotcovered by its policy

(§ 6.3.1). Consequently, it is less problematic that the sharing practices, whichare skewed towards

the negative classes, have relatively lowF-1pos scores of 0.55 (SID) and 0.47 (SC) or could not be

calculated (SL) due to a lack of true positives in the policy test set.

Classification Results for Full App/Policy Set. I applied the classifiers to the policies in the

full app/policy set withn = 9, 050 policies. I obtained this set by adjusting the full policy set

(n = 9, 295) to account for the fact that not every policy link might actually lead to a policy:

for 40 randomly selected apps from the full policy set I checked whetherthe policy link in fact

lead to a policy, which was the case for 97.5% (39/40) of links (with a CI of 0.87 to 1 at the 95%

level). As the other 2.5% of links lead to some other page and would not containany data practice

descriptions, 2.5% of policies without any data practice descriptions were excluded leavingn =

9, 295− 245 = 9, 050 policies in the full app/policy set. This adjustment increases the occurrence

of positive data practice instances in the full app/policy set and keeps discrepancies between apps

and policies at a conservative level as some apps with lacking data practicedescriptions are now

excluded.22

22I also checked the random sample of 40 apps for policies dynamically loaded via JavaScript because for such policies the feature



CHAPTER 6. BRIDGING THE GAP BETWEEN NOTICES AND ACTUAL PRACTICES 87

Figure 6.5: (1) The system first crawls the U.S. Google Play store for free apps. (2) Then, it

performs for each app a static analysis. Specifically, it applies permission extraction, call graph

creation, and call ID analysis, the latter of which is based on Android system and third party APIs.

(3) Finally, results for the collection and sharing practices are generated and stored.

It appears that many privacy policies fail to satisfy privacy requirements. Most notably, per

Table 6.2, only 46% describe the notification process for policy changes,a mandatory requirement

for apps that do not exclude California and Delaware residents. Similarly,only 36% of policies

contain a statement on user access, edit, and deletion rights, which COPPA requires for childrens’

apps, that is, apps intended for children or known to be used by children. For the sharing practices

I expected more policies to engage in the SID, SL, and SC practices. The respective 10%, 12%,

and 6% are rather small percentages for a presumably widely occurring practice, especially, given

that the focus is on policies of free apps that often rely on targeted advertising.

Runtime Performance and Failure Rate.The analysis of all practices for the policies in the full

app/policy set required about half an hour in total running ten threads in parallel on an Amazon

Web Services (AWS) EC2 instance m4.4xlarge with 2.4 GHz Intel Xeon E5-2676 v3 (Haswell),

16 vCPU, and 64 GiB memory[31]. The feature extraction took up the majority of time and the

training and classification finished in about one minute. There was no failurein extracting policy

features or analyzing policies.

extraction would fail. However, as neither of the policies in the sample was loaded dynamically, I do not make an adjustment inthis

regard. Note, though, in the system built for the CaliforniaDepartment of Justice (§ 6.4) functionality for analyzing dynamically

loaded policies was implemented as well.
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6.2 Mobile App Analysis

In order to compare the policy analysis results to what apps actually do according to their code

let us now turn to the app analysis approach. Let us first discuss the system design (§ 6.2.1) and

follow up with the analysis results (§ 6.2.2).

6.2.1 System Design

The app analysis system is based on Androguard[34], an open source static analysis tool written

in Python that provides extensible analytical functionality. Apart from the manual intervention in

the construction and testing phase the system’s analysis is fully automated. Figure 6.5 shows a

sketch of the system architecture. A brief example for sharing of device IDs will convey the basic

program flow of the data-driven static analysis.

For each APK the system builds an API invocation map, which is utilized as a partial call graph

(call graph creation). To illustrate the functionality with an example, for the practice of sharing

device IDs (SID) all calls to theandroid.telephony.Telephony Manager.getDeviceId

API are included in the call graph because the caller can use it to requesta device ID. All calls

to this and other APIs that can be used to request a device ID are included inthe call graph and

passed to the identification routine (call ID analysis), which checks the package names of the

callers against the package names of selected third party libraries that areanalyzed. In order to

make use of thegetDeviceId API a library needs theREAD_PHONE_STATE permission. Only if

the analysis detects that the library has the required permission (permission extraction), the app is

classified as sharing device IDs with third parties.23 I identified relevant Android API calls for the

types of information and the permission each call requires by using PScout[41].

The static analysis is informed by a manual evaluation of Android and third party APIs. Be-

cause sharing of data most often occurs through third party libraries[97], it is appropriate to

leverage the insight that the observation of data sharing for a given library allows extension of that

result to all apps using the same library[129]. As the top libraries have the farthest reach[129] I

focus on those. I used AppBrain[36] to identify the ten most popular libraries by app count that

23Android’s permission model as of Android 6.0 does not distinguish between permissions for an app and permissions for a library,

which, thus, can request all permissions of the app.
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process device ID, location, or contact data. To the extent they were accessible I also analyzed

previous library versions dating back to 2011. After all, apps sometimes continue to use older

library versions even after the library API has been updated. For eachlibrary I opened a developer

account, created a sample app, and observed the data flows from the developer perspective. For

these apps as well as for a sample of Google Play store apps that implement theselected libraries

I additionally observed their behavior from the outside by capturing and decrypting packets via

a man-in-the-middle attack and a fake certificate[216]. I also analyzed library documentations.

These exercises enable to see which data types were sent out to which third parties.

6.2.2 Analysis Results

Performance Results for App Test Set.Before getting into the analysis results for the full app

set I discuss the performance of the app analysis on a set of 40 apps (app test set), which were

selected randomly from the publishers in the policy test set to obtain corresponding app/policy

test pairs for the later analysis of privacy requirement inconsistencies (§ 6.3.1). To check whether

the data practices in the test apps were correctly analyzed by the system I dynamically observed

and decrypted the data flows from the test apps to first and third parties, performed a manual

static analysis for each test app with Androguard[34], and studied the documentations of third

party libraries. Thus, for example, it is possible to infer from the proper implementation of a

given library that data is shared as explained in the library’s documentation. I did not measure

performance based on micro-benchmarks, such as DroidBench[38], as those do not fully cover

the data practices investigated here.

In the context of privacy requirement inconsistencies (§ 6.3.1) correctly identifying positive

instances of apps’ collection and sharing practices is more relevant than identifying negative in-

stances because only practices that are occurring in an app need to be covered in a policy. Thus,

the results for the data practices with rarely occurring positive test casesare especially noteworthy:

CC, SL, and SC all reachedF-1pos = 1 indicating that the static analysis is able to identify positive

practices even if they rarely occur. Further, the F-1pos scores, averaging to a mean of 0.96, show

the overall reliability of the approach. For all practices the accuracy is also above the baseline of

always selecting the test set class that occurs the most for a given practice. Overall, as shown in

Table 6.4, the results demonstrate the general reliability of the analysis.
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3rd Party Library

Crashlytics/Fabric

Crittercism/Aptel.

Flurry Analytics

Google Analytics

Umeng

AdMob*

InMobi*

MoPub*

MillennialMedia*

StartApp*

Table 6.3:

Analytics and

ad* libraries.

Pract
Base

(n=40)

95% CI

(n=40)

Precpos

(n=40)

Recpos

(n=40)

F-1pos

(n=40)

F-1neg

(n=40)

Posw/ pol

(n=9,295)

Posw/o pol

(n=8,696)

CID 0.8 0.76–0.97 0.89 1 0.94 0.67 95% 87%

CL 0.55 0.64–0.91 0.73 1 0.85 0.71 66% 49%

CC 0.78 0.91–1 1 1 1 1 25% 12%

SID 0.68 0.83–0.99 1 0.93 0.96 0.93 71% 62%

SL 0.93 0.91–1 1 1 1 1 20% 16%

SC 0.98 0.91–1 1 1 1 1 2% 0%

Table 6.4:App analysis results for the app test set (n=40) and the percentages

of practices’ positive classifications for the full app set (n=17,991). More

specifically,Pos w/ pol andPos w/o pol are showing what percentage of

apps engage in a given practice for the subset of apps in the full app set with

a policy (n=9,295) and without a policy (n=8,696), respectively. Precision,

recall, and F-1 score with thepos andneg subscripts refer to the scores for the

positive and negative classes.

Data Practice Results for Full App Set. For all six data practices there is a mean of 2.79 pos-

itive practices per app for apps with policies and 2.27 cases for apps without policies. As all

practices generally need to be described in a policy (§ 6.1.1), it is already clear that there are sub-

stantial amounts of inconsistencies between apps and policies simply due to missing policies. For

example, sharing of device IDs was detected in 62% of apps that did not have a policy, which,

consequently, appear to be in non-compliance of privacy requirements.Furthermore, for apps that

had a policy only 10% disclosed the SID practice (§ 6.1.3.2) while it occurred in 71% of apps.

Thus, 61% of those apps appear to be in non-compliance as well. The only practices for which it

is not possible to immediately infer the existence of inconsistencies are the CC and SC practices

with policy disclosures of 56% and 6% and occurrences in apps of 25% and 2%, respectively.

There could be two reasons for this finding.

First, there could be a higher sensitivity among app publishers to notify users of practices

related to contact data compared to practices that involve device identifiers and location data. Sec-

ond, different from device ID and location data, contact information is often provided by the user

through the app interface bypassing the APIs considered for the static analysis (most notably, the

android.accounts.AccountManager.getAccounts API). Thus, the result demonstrates

that the analysis approach has to be custom-tailored to each data type and that the user interface
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should receive heightened attention in future works[235]. It also illustrates that the results only

represent a lower bound, particularly, for the sharing practices (SID, SL, SC), which are limited to

data sent to the ten publishers of the libraries in Table 6.3.

Limitations. I want to point out various limitations of the approach introduced here. At the

outset the approach is generally subject to the same limitations that all static analysis techniques

for Android are facing, most notably, the difficulties of analyzing native code [25], obfuscated

code[181], and indirect techniques (e.g., reflection). However, there are various considerations

that ameliorate exposure of the approach to these challenges. First, if an app or a library uses

native code, it cannot hide its access to Android System APIs[129]. In addition, the use of

native code in ad libraries is minimal[181]. Indeed, there was rarely native code observed in the

analysis. Similarly, the need to interact with a variety of app developers effectively prohibits the

use of indirect techniques[50]. However, code obfuscation presented in fact an obstacle. The

static analysis failed in 0.4% (64/18,055) due to obfuscation (i.e., an app’s Dex file completely in

bytecode). However, the failure rate improves over the closest comparable rate of 21%[235].

It is a further limitation of the approach suggested here that the identification of data practices

is limited to observations from the outside (e.g., server-side code is not considered). While this

limitation is not a problem for companies’ analysis of their own apps, which I see as a major

application of the system, it can become prevalent for regulators, for instance. In many cases

decrypting HTTPS traffic via a man-in-the-middle attack and a fake certificatewill shed some

light. However, it appears that some publishers are applying encryption inside their app or library.

In those cases, the analysis will need to rely on inferring the data practice inquestion indirectly.

For example, it remains possible to check whether a library is properly implemented in an app

according to the library’s documentation, which lends evidence to the inference that the app indeed

makes use of the documented data practices.

Also, the results for the sharing practices only refer to the ten third parties listed in Table 6.3.

The percentages for sharing of contacts, device IDs, or locations would almost certainly be higher

if additional libraries are considered. In addition, the definition of sharingdata with a third party

only encompasses sharing data with ad networks and analytics libraries. However, as it was shown

that ad libraries are the recipients of data in 65% of all cases[129], I believe that this definition

covers a substantial portion of sharing practices. It should be finally noted that the investigation
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does not include collection or sharing of data that occurs offline or at thebackend. However, as

the analysis already identifies a substantial percentage of non-compliant apps, I think that there is

value in the introduced techniques even with these limitations.

Runtime Performance. In terms of runtime performance, using ten threads in parallel on an

AWS EC2 instance m4.10xlarge with 2.4 GHz Intel Xeon E5-2676 v3 (Haswell), 40 vCPU, and

160 GiB memory[31] the analysis of all 17,991 APKs took about 31 hours. The mean runtime is

6.2 seconds per APK analysis.

6.3 Privacy Requirement Inconsistencies

In this section I marry the policy (§ 6.1) and app (§ 6.2) analyses. I explore to which extent apps

are non-compliant with privacy requirements (§ 6.3.1) and show how app metadata can be used to

zoom in on sets of apps that have a higher likelihood of non-compliance (§ 6.3.2).

6.3.1 Identifying Individual Privacy Requirement Inconsistencies

Non-compliance of apps with privacy requirements is not necessarily based on malicious behavior

of software developers.

Privacy Requirement InconsistenciesApp developers were found to often lack an understanding

of privacy-best practices[44], and it could be that many of the privacy requirement inconsisten-

cies are a result of this lack of understanding. Many developers struggle to understand what type

of data third parties receive, and with limited time and resources even self-described privacy ad-

vocates and security experts grapple with implementing privacy and securityprotection[44]. In

this regard, the analysis approach can provide developers with a valuable indicator for instances

of non-compliance. For identifying privacy requirement inconsistenciespositive app classes and

negative policy classes are relevant. In other words, if a data practice does not occur in an app, it

does not need policy coverage because there can be no privacy requirement inconsistency to begin

with. Similarly, if a user is notified about a data practice in a policy, it is irrelevant whether the

practice is implemented in the app or not. Either way, the app is covered by the policy. Based on

these insights the performance of the approach is analyzed.

Performance Results for App/Policy Test Set.To check the performance of the system for cor-
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rectly identifying privacy requirement inconsistencies a test set with corresponding app/policy

pairs (app/policy test set) is used. The set contains the 40 apps from the app test set (§ 6.2.2) and

their associated policies from the policy test set (§ 6.1.3.3). An app and a policy are associated if

the app or its Play store page links to the policy or if the policy explicitly declares itself applicable

to mobile apps. As only 23 policies satisfy this requirement some policies are associated with

multiple apps. Making 240 classifications in the app/policy test set—that is, classifying six prac-

tices for each of the 40 app/policy pairs—the system correctly identified 32 privacy requirement

inconsistencies (TP). It also returned five false negatives (FN), 10 false positives (FP), and 193

true negatives (TN). As shown in Table 6.5, accuracy results range between 0.86 and 1 with a

mean of 0.94. Although not fully comparable, AsDroid achieved an accuracy of 0.79 for detecting

stealthy behavior[150] and Slavin et al.[235] report an accuracy of 0.8 for detecting discrepancies

between app behavior and policy descriptions.

The F-1pos scores for the analysis, ranging from 0.7 to 1, indicate the overall reliableiden-

tification of privacy requirement inconsistencies. While I think that these results are generally

promising, precision value ofPrecpos = 0.54 for the CL practice is relatively low. This result

illustrates a broader point that is applicable beyond location collection. Falsepositives seem to

occur because the analysis takes into account too many Android system APIs that are only occa-

sionally used for purposes of the data practice in question. Despite the believe that it is better to

err on the side of false positives, which is especially true for an auditing system[129], in hind-

sight I probably would have left out some APIs. The opposite problem seems to occur in the SID

practice. I included too few relevant APIs. In this regard, it is a challenge to identify a set of APIs

that at the same time captures the bulk of cases for a given practice without being over-inclusive.

Privacy Requirement Inconsistencies for Full App/Policy Set.As indicated by the high in-

consistency percentages shown in Table 6.5, privacy requirement inconsistencies seem to be a

widespread phenomenon. Specifically, collection of device IDs and locations as well as sharing

of device IDs are practices that appear to be inconsistent for 50%, 41%, and 63% of apps, respec-

tively. It is further noteworthy that for SL and SC nearly every detectionof the practice goes hand

in hand with a privacy requirement inconsistency. For the apps that share location information

(20%, per Table 6.4) nearly all (17%, per Table 6.5) do not properly disclose such sharing. Simi-

larly, for the 2% of apps that share contact data only a handful providesufficient disclosure. For
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Practice
Acc

(n=40)

Accpol· Accapp

(n=40)

95% CI

(n=40)

Precpos

(n=40)

Recpos

(n=40)

F-1pos

(n=40)

F-1neg

(n=40)

MCC

(n=40)

TP, FP, TN, FN

(n=40)

Inconsist

(n=9,050)

CID 0.95 0.74 0.83–0.99 0.75 1 0.86 0.97 0.84 6, 2, 32, 0 50%

CL 0.83 0.7 0.67–0.93 0.54 1 0.7 0.88 0.65 8, 7, 25, 0 41%

CC 1 0.88 0.91–1 - - - 1 - 0, 0, 40, 0 9%

SID 0.85 0.84 0.7–0.94 0.93 0.74 0.82 0.87 0.71 14, 1, 20, 5 63%

SL 1 0.93 0.91–1 1 1 1 1 1 3, 0, 37, 0 17%

SC 1 0.78 0.91–1 1 1 1 1 1 1, 0, 39, 0 2%

Table 6.5: Results for identifying privacy requirement inconsistencies in the app/policy test set

(n=40) and the percentage of privacy requirements inconsistencies forall 9,050 app/policy pairs

(Inconsistency). Assuming independence of policy and app accuracies, Accpol· Accapp, that is, the

product of policy analysis accuracy () and app analysis accuracy (), indicates worse results than

the directly measured accuracy. However, the Matthews correlation coefficient (MCC), a measure

that is particularly insightful for evaluating classifier performance in skewedclasses, indicates a

positive correlation between the observed and predicted classes.

the majority of those cases it is not even necessary to perform a policy analysis to detect privacy

requirement inconsistencies.

From a big picture view, the average number of 1.83 inconsistencies per app is high compared

to the closest previous averages with 0.62 (113/182) cases of stealthy behavior[150] and potential

privacy violations of 1.2 (24/20)[96] and 0.71 (341/477)[235]. Figure 6.6 shows the details. It

should also be noted that for apps without a policy essentially every data collection or sharing

practice causes an inconsistency. For example, all 62% apps without a policy that share device

IDs (Table 6.4) are non-compliant. Thus, overall the results suggest a broad level of inconsistency

between apps and policies. As the system is currently evaluated for its use inprivacy enforcement

with the California Department of Justice (§ 6.4) I did not yet contact any affected app publishers

of the findings.

6.3.2 Predicting Inconsistencies from App Metadata for Groups of Apps

Analyzing individual apps for privacy requirement compliance at scaleis a time- and resource-

intensive task. Thus, it is worthwhile to first estimate an app population’s non-compliance as a

whole before digging deep into individual analyses. My suggestion is to systematically explore

app metadata for correlations with privacy requirement inconsistencies based on statistical models.
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Figure 6.6: For the full app/policy set (n = 9,050) 2,455 apps have one inconsistency,2,460

have two, and only 1,461 adhere completely to their policy. Each app exhibitsa mean of 1.83

(16,536/9,050) inconsistencies (with the following means per data practice: CID: 0.5, CL: 0.41,

CC: 0.09, SID: 0.63, SL: 0.17, SC: 0.02).

This broad macro analysis supplements the individual app analysis and reveals areas of concern on

which, for example, privacy activists can focus on. To illustrate this idea Ievaluate a binary logis-

tic regression model that determines the dependence of whether an app has a privacy requirement

inconsistency (the dependent variable) from six Play store app metadata variables (the indepen-

dent variables). The results, shown in Table 6.6, demonstrate correlations at various statistical

significance levels with p values ranging from 0.0001 to 0.08. Particularly, with an increase in the

number of user ratings the probability of privacy requirement inconsistencies decreases. There is

also a decreasing effect for apps with a badge and for apps whose content has not yet been rated.

Interestingly, apps with higher overall Google Play store scores do not have lower odds for

privacy requirement inconsistencies. In fact, the opposite is true. With anincrease in the overall

score the odds of an inconsistency become higher. An increase of the overall score by one unit,

e.g., from 3.1 to 4.1 (on a scale of 1 through 5), increases the odds of an inconsistency by a factor

of 1.4. A reason could be that highly rated apps provide functionality and personalization based

on user data, whose processing is insufficiently described in their privacy policies. At least, users

do not seem to rate apps based on privacy considerations. I found theword “privacy” in only

1% (220/17,991) of all app reviews. Beyond an app’s score the odds for a privacy requirement

inconsistency also increase for apps that feature in-app purchases or interactive elements. Also,

supplementing the model with category information reveals that the odds for aninconsistency

significantly (p≤ 0.05) surge for apps in the Finance, Health & Fitness, Photography, and Travel
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Figure 6.7: The graph shows the predicted probability of an app having a privacy requirement

inconsistency dependent on the number of user ratings and the assignment of a badge. The overall

score is held at the mean and in-app purchases, interactive elements, and unrated content are held

to be not present. The shaded areas identify the profile likelihood CIs at the95% level.

& Local categories while they decrease for apps in the Libraries & Demo category.

In order to evaluate the overall model fit based on statistical significance Ichecked whether

the model with independent variables (omitting the category variables) had significantly better fit

than a null model (that is, a model with the intercept only). The result of a chi-square value of

151.03 with six degrees of freedom and value of p≤ 0.001 indicates that the model has indeed

significantly better fit than the null model. To see the impact of selected aspectsof the model it

is useful to illustrate the predicted probabilities. An example is contained in Figure 6.7. Apps

with a Top Developer or Editor’s Choice badge have a nearly 10% lower probability of a privacy

requirement inconsistency. That probability further decreases with moreuser ratings for both apps

with and without badge.

6.4 Case Study: Assisting the California Department of Justice in

enforcing CalOPPA

Currently the system’s use in enforcement actions is evaluated with the California Department of

Justice, specifically, the Office of the Attorney General, on evaluating the system’s suitability for

supplementing the enforcement of CalOPPA. To that end, a custom-made version of the system

is implemented for the Attorney General (§ 6.4.1) and various new analysis functionality is being

added (§ 6.4.3). The preliminary feedback received up to this point on the performance of the
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Variable Pos p value OR 95% CI

|User Ratings| 100% 0.0001 0.9 0.9999998–0.9

Overall Score 100% <0.0001 1.4 1.24–1.57

Badge 21% <0.0001 0.57 0.49–0.65

In-app Purchases 27% 0.08 1.15 0.99–1.34

Interactive Elm 45% <0.0001 1.33 1.17–1.53

Content Unrated 5% 0.002 0.68 0.53–0.87

Table 6.6: Significant variables for predicting apps’ non-compliance with at least one privacy

requirement as evaluated on the full app-policy set (n=9,050). Top Developer and Editor’s Choice

badges are assigned by Google. Interactive elements and unrated content refer to the respective

ESRB classifications. Pos% are the percentages of positive cases (e.g., 100% apps have an overall

score), OR is the odds ratio, and the 95% CI is the profile likelihood CI.

system is encouraging and, as I believe, an indicator for making further strides towards the current

direction (§ 6.4.3).

6.4.1 System Implementation

The system implementation for the Office of the Attorney General, shown in Figure 6.8, allows

users to input either the package name or Play Store page URL of an app that they would like to

analyze. The system then automatically runs the analysis and displays the results. Analyses can be

requested for individual apps, however, the system also supports batch processing. The frontend

of the system consists of a web application, which has the advantage that it does not require users

to install any special software on their local computers. As it is easier to usea graphical user

interface instead of a command line interface is used.

The system has to be available at all times, so that people working in the Officeof the Attorney

General would be able to analyze an app whenever it becomes necessary. As such a system

is mostly resource-intensive when apps are being analyzed, however,otherwise stays idle, an

AWS EC2 t2.large instance with up to 3.0 GHz Intel Xeon, 2 vCPU, and 8 GiB memory [31]

is leveraged. Each of these instances has enough resources to analyze three apps in about ten

minutes. Should it become necessary it is possible to immediately scale the number of instances
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Figure 6.8: The system allows users to analyze apps for privacy policy compliance. Anapp can be

subject to multiple privacy policies—for example, one policy linked to from insidethe app and one

linked to from the app’s Play Store page. In these cases the app is checkedagainst both policies.

and increase the throughput quickly.

The interface applies the Flask Python web framework[226] running on the Apache web

server[243] with a Web Server Gateway Interface module[92]. All analysis requests are added

to a Celery task queue[40] that communicates with the Flask application using the RabbitMQ

message broker[213]. When users are submitting analysis requests from the web interface, which

is served by Flask, the requests are put into the task queue and executedone at a time. Once an

analysis is finished the results are written to a JSON file, which is loaded by the Flask application,

and displayed in the users’ browsers.



CHAPTER 6. BRIDGING THE GAP BETWEEN NOTICES AND ACTUAL PRACTICES 99

In order to download APK files for requested apps from the Play store thesystem makes use

of Raccoon[204], which is also used in the original system. The system obtains the privacy policy

links for the requested apps from their Play store pages. To download thewebsites that the links

lead to a Firefox browser with Selenium[231] and PyVirtualDisplay[214] is automated, which

allows to run a real browser without having a graphical user interface.Using a real browser instead

of just crawling the HTML of the policy pages is advantageous as it is possible to obtain policies

that are loaded dynamically via JavaScript.

Figure 6.9: A screenshot from the web application’s results view for the analysis of the Facebook

Messenger app, which was not flagged for any inconsistencies.

After the website with the privacy policy is downloaded any elements that are not part of the

policy, such as advertisements or page navigation elements, are removed. The system then runs

the feature extraction routines (§ 6.1.3.2) as well as ML classifiers (§ 6.1.3.3) on the policy and

the static analysis (§ 6.2) on the downloaded APK. Finally, the results are displayed to the user

with flags raised for all privacy requirement inconsistencies. Figure 6.9shows an example of the

results view.
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6.4.2 Adding Additional Functionality

Tailoring the system for use by the Office of the California Attorney General requires a strong

focus on usability. Various users come from non-technical backgrounds and were easily thrown

off by some of the terminology used in the presentation of the analysis results.For example,

instead of using the terms “true” and “false” for the occurrence and absence of a practice, they

instead found the terms “yes” and “no” clearer. For these types of usability refinements as well

as for the other changes to the system an iterative development cycle is used where the future

development of the system is based on weekly user feedback.

Users were also interested in receiving additional information, which lead us to expand the

analysis. For example, one additional piece of information is the breakdownof third parties in

the sharing practices. The initial version of the report simply showed whatinformation was being

shared without mentioning the third parties. For example, a report would show that the user’s

contact and device ID were being shared without disclosing that, say, contact information is shared

with InMobi and the device ID with Crashlytics. However, this distinction is important under an

interpretation of CalOPPA according to which the sharing of contact information makes a stronger

case.24

Given the importance of contact information, the implementation of additional functionality to

detect further instances of contact sharing is finalized. As I believe thatthe relatively low detection

rate for the collection and sharing of contact information is due to the fact that such information

is often supplied by the user, which the original system does not check (§ 6.2.2), the system will

be enhanced in this regard. In particular, leveraging the Facebook Login library [103] that is

included in many apps and that, by default, gives the app access to a user’s name and Facebook

ID, which can be used to identify and contact a user, is instructive. The usage of Facebook Login

functionality can be detected in an app by extracting the app’s manifest and resource files with

Apktool [246] and then searching for signatures that would be required for Facebook login. These

include an activity or extent filter dedicated to the login interface, a login buttonon the layout, and

the invocation of an initialization, destruction, or configuration routine from the Facebook Login

library.

24Compare Cal. Bus. & Prof. Code§22577(a)(3) and (7).
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Another added feature is the retrieval of privacy policy links from insideapps. The initial

policy crawler had just downloaded policies that were linked from an app’s Play store page. As

the Attorney General provided guidance to app publishers for linking the policy from both the Play

store as well as from inside the app[61], the new approach is intended to cover both possibilities.

The links in an app can be found by extracting strings from the APK file usingApktool and then

extracting URLs from within these strings which contain keywords, such as“privacy.” If a link

inside an app differs from the app’s Play store policy link or if there are multiple links in the app,

the system analyzes the documents those links are leading to as well. The interface allows the user

to pick which policy to show results for.

6.4.3 Preliminary Feedback

The users of the system at the Office of the California Attorney General reported that the system

has the potential to increase their productivity. Particularly, as they have limited resources it can

give them guidance on the areas of mobile apps to focus on. Since they have limited time, they can

put less effort into analyzing practices in apps for which the system doesnot find inconsistencies.

Instead, they can spend most of their time examining the specific inconsistencies in apps that are

flagged. In addition, the users expressed that the system was useful for showing them the current

overall state of CalOPPA compliance. For example, the analysis results alerted them to the many

policies which use vague language in the descriptions of their collection and sharing practices.

6.5 Conclusion

The law of notice and choice is intended to enable enforcement of data practices in mobile apps

and other online services. However, verifying whether an app actually behaves according to the

law and its privacy policy is decisively hard. To alleviate this problem I propose the use of an

automated analysis system based on machine learning and static analysis. Thesystem advances

app privacy in three main thrusts: it increases transparency for otherwise largely opaque data

practices, offers the scalability necessary for potentially making an impact on the app eco-system

as a whole, and provides a first step towards the automation of privacy requirement checks.

The results suggest the occurrence of privacy requirement inconsistencies on a large scale.
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This finding raises the question of extending the approach to other areas.While I focused on the

Android platform, the approach is, in principle, adaptable to other mobile platforms, for example,

for iOS using[86; 174]. The approach can also be made workable for the analysis of websites’

data practices, e.g., leveraging[233], for which first and third party cookies and other tracking

mechanisms can be observed to evaluate collection and sharing of data. TheInternet of Things

and sensor data represent other rich use cases. Fitness trackers withAPIs for monitoring the heart

rate and other body sensor data could be a first step towards exploring these areas.

I believe that it is necessary to develop public policy and law alongside the privacy require-

ment analysis system I propose. In my opinion, regulators are moving in the right direction by

pushing for app store standardization[60] and early enforcement of potentially invasive privacy

practices[113]. Approaches like the one proposed here can relieve regulators through automa-

tion and allow them to focus their limited resources to move from a purely reactionary approach

towards systematic oversight. As I also think that many software publishers do not intend non-

compliance with privacy requirements, but rather lose track of their obligations or are unaware of

them, I also advocate for implementation of a privacy law check in software development tools

and as part of the app vetting process in app stores.
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Chapter 7

Cross-device Tracking

As online users are increasingly accessing the Internet from multiple devices a new form of track-

ing is emerging: cross-device tracking. This practice—in most cases for purposes of advertising—

is aimed at crossing the boundary between a user’s individual devices and browsers. It establishes

a person-centric approach to recognize users across devices and seeks to combine the input from

the various data sources into a single comprehensive user profile. By its very nature such tracking

across devices can reveal a complete picture of a person and, thus, become more privacy-invasive

than the siloed tracking via HTTP cookies or other traditional tracking mechanisms. Cross-device

tracking is also a form of tracking in which ML techniques play a major role fordetecting which

devices belong to the same user.

To my knowledge no rigorous privacy analysis of cross-device tracking has been conducted.

Thus, the work presented here should be understood as a foundational privacy analysis from which

mechanisms for privacy protection can be developed. Possible privacymechanisms could involve

notifying users of the cross-device trackers’ occurrences on appsor websites and developing and

opt-out model across devices that is convenient to use without hamperinglegitimate industry in-

terests. However, in order to develop meaningful privacy protection mechanisms a variety of basic

questions have to be further explored: How can cross-device trackingbe detected? What are

the methods used by cross-device tracking companies? Where and to whichextent does cross-

device tracking occur? Is the current self-regulatory approach promising or should regulators and

lawmakers step in? In the following I aim to provide some basic insight into these fundamental

questions to ultimately develop sound privacy protection mechanisms.
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Figure 7.1: Identifying Sally’s phone and desktop among the other devices on the Internet based

on device and software metadata.

In particular, I demonstrate a method to detect the occurrence of cross-device tracking, which

can be implemented in an ML classifier. Also, based on cross-device tracking data that I collected

from 126 Internet users I explore the frequency of trackers capable of crossing device boundaries.

I show that the similarity of IP addresses and Internet history of a user across devices gives rise

to a matching rate of F-1 = 0.91 for connecting a mobile to a desktop device. Thisfinding is

particularly noteworthy in light of the increase in learning power that ad networks and analytics

services can achieve by leveraging Internet history from more than onedevice. Given these privacy

implications of cross-device tracking I also examine compliance with applicable self-regulation for

40 cross-device companies and find that some are not transparent about their practices. The work

presented here provides a foundation for use in ML technologies, particularly, personal privacy

assistants[6].

In a study commissioned by Facebook the Gesellschaft für Konsumforschung revealed that

in the U.S. and the U.K. 60% of online adults use at least two devices every day [128]. Also,

more than 40% of Internet users start an activity on one device and finishit on another[128]. A

similar study by Google showed that 98% of surveyed users in the U.S. move between devices

on the same day and 90% use multiple screens sequentially to accomplish a task over time[136].

The increased Internet-connectivity of devices, particularly, of smartphones, enables ad networks,

analytics services, and other Internet companies to learn much more abouttheir users than they
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previously could.1 I want to shed some light on the privacy implications of cross-device tracking

practices.

Cross-device tracking (sometimes also referred to as cross-device retargeting [206], cross-

platform optimization[35], or multi-platform tracking[67]) is the tracing of an individual’s usage

of the Internet on multiple devices and combining all resulting information into onecomprehen-

sive user profile. Ad networks and analytics services are at the forefront of cross-device tracking

because it enables more efficient user targeting and attributing conversion. As illustrated in Fig-

ure 7.1, ad networks could deliver ads to Sally on her desktop for a flightwhose booking she

abandoned earlier on her phone. Cross-device tracking goes beyond the tracking of standalone de-

vices but rather aims to identify all devices of a person. The correlation ofmultiple devices equates

ultimately to the tracking of apersonand, as such, is potentially much more privacy-invasive than

the tracking of unconnected devices.

Currently, many companies in the ad space add cross-device functionality totheir systems.

At the outset two basic types of cross-device tracking can be distinguished: deterministic and

probabilistic cross-device tracking. Deterministic cross-device tracking occurs in a first-party re-

lationship in which a user’s device can usually be identified with near certainty. For example, if

a user logged into his or her social network account from one device and later logs into the same

account from another device, the social network can assume that the twodevices belong to the

same user (save for any device sharing or account hacking). At thatpoint the user can be traced

through all websites and apps that make use of the social network’s plugins, software development

kits (sdks), or other tracking software—even when the user is not logged in[63].

For the most part I focus on probabilistic cross-device tracking. Different from its determin-

istic implementations, probabilistic techniques are used by services that only have a third-party

relationship with Internet users. To that end ad networks and analytics providers are making use

of cookies and other tracking mechanisms that are deployed on the websitesand apps of the pub-

lishers they cooperate with and that have a first-party user relationship. Applying machine learning

they then correlate the various data streams to identify which ones belong to thesame users. How-

ever, as I will discuss (§ refbreadth) probabilistic and deterministic cross-device tracking are not

1I am using the term ad network loosely encompassing ad exchanges, demand side platforms, supply side platforms, and ad tech

companies.
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Figure 7.2: Screenshots of selected ads served to the desktop browser after visiting the websites

shown below on the mobile browser. I had not seen any of these ads in theinitial desktop browsing

session two months earlier.

mutually exclusive but are rather complementary as companies of differentprovenance cooperate

with each other and exchange data.

Some of the ad networks that apply probabilistic cross-device tracking claimto match billions

of devices[2]. Social networks and webmail providers have cross-device functionality naturally

built into their services[3]. Given this depth and scope of cross-device tracking the FTC recently

hosted a cross-device workshop[115]. The event facilitated an initial public discussion about the

privacy implications of this new form of Internet tracking. Regulators, industry representatives,

academics, and various other stakeholders discussed privacy risks,consumer transparency, and the

extent to which industry self-regulation can provide appropriate privacy standards. As evidenced

by a recent case the FTC is determined to enforce cross-device trackingviolations[120], however,

is hampered by insufficient insight into the used technologies[116].

7.1 Case Study: Detecting Cross-device Tracking

In order to discover how cross-device tracking actually occurs in the wildI conducted an ex-

ploratory case study. While I would not want to claim the experiment as a comprehensive survey

of the cross-device phenomenon in the real world, I think that it providessufficient evidence for

its occurrence and underlines the basic workings of the ad industry in this realm. It provides a first

glimpse into the emerging cross-device landscape highlighting some of its players and their part-

nerships. The underlying method of the experiment can be used to generically test for cross-device



CHAPTER 7. CROSS-DEVICE TRACKING 107

1. google.com

2. google.com; buy pet food - Google Search

3. m.petsmart.com; PetSmart

4. m.petsmart.com; Food

5. m.petsmart.com; Fancy Feast Classic Adult Cat

6. google.com; petco - Google Search

7. m.petco.com; Pet Supplies, Pet Food, and Pet P.

8. m.petco.com; Cat Furniture: Cat Trees, Towers

9. m.petco.com; Cat Food

10. m.petco.com; Browse & Buy Hill’s Science Diet

11. m.petco.com; Hills Science Diet Adult Perfect W.

12. instinctpetfood.com; Instinct Pet Food

13. instinctpetfood.com; Instinct Pet Food For Your Cat

14. instinctpetfood.com; Instinct Raw for Cats - Instinct

15. google.com; beneful cat food - Google Search

16. google.com; instacart

17. google.com

18. google.com; buy watch - Google Search

19. brilliantearth.com; Beyond Conflict Free Diamonds

20. google.com; buy refrigerator - Google Search

21. offers.geappliances.com; Drimmers - Offers GE A.

22. m.homedepot.com; Top Freezer Refrigerators - Re.

23. m.homedepot.com; Refrigerators

24. searshometownstores.com; Refrigerators & Freezers

25. searsoutlet.com; Refrigerators & Freezers for Sale

26. amazon.com

27. amazon.com; search for refrigerator

28. amazon.com; LG LSXS26366S 35-Inch Side

29. shoppermart.net; ShopperMart.net: Find the best

30. samsung.com; Galaxy TabPro S - 2-in-1 Tablet

Figure 7.3: The complete mobile browser history (without the visits to the Alexa-ranked home-

pages in the first two months of the experiment). The list shows the domainsas well as the titles of

the webpages, and the order reflects the order of visits.

tracking without resorting to formally requesting information from cross-device companies or us-

ing the limited ad preference tools that a few of them provide (e.g., the BlueKairegistry[205]).

Particularly, the method can be implemented in an ML classifier.

Establishing an IP Link. I began the experiment by establishing an IP address connection be-

tween two devices—a desktop and a mobile device—that cross-device companies could pick up.

During the time of the experiment I kept the IP address of the router to which both phone and

desktop were connected unchanged. Using a fresh desktop browserwithout any cookies or other

user data I visited the homepages of five random ad-financed news websites, that is, aol.com, la-

times.com. nytimes.com, wsj.com, and washingtonpost.com (the test homepages), and observed

the ads that were served. I refreshed each test homepage about ten times. The next two months I
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occasionally and randomly visited highly ranked homepages from the Alexa[28] rankings on the

mobile browser; in total about 100 pages.

Observing Cross-device Ads.After the two months had passed I used the same mobile browser

for visiting the websites shown in Figure 7.3. Specifically, after performing the shown Google

searches I clicked on some ads of the Google results page. I then waited a few hours and switched

to the desktop browser. Then, I accessed the test homepages from the start of the experiment,

refreshed them about ten times, and took again note of the ads that were served. Some of the

ads, neither of which were seen before on the test homepages, strikinglyresembled the browsing

history on the mobile. Figure 7.2 shows these ads and associated information,that is, the name

of the ad (e.g., PetSmart), the domain on which it was served (e.g., nytimes.com),the domain of

the tracker (e.g., adsense.com), the ad network serving the ad (e.g., Google AdSense), and the

presumably involved cross-device tracking provider (e.g., Google Display Network).

It is noteworthy that the Kate Spade watch ad in Figure 7.2C. appeared nearly every time I

refreshed the AOL homepage. I believe this ad was shown due to the earlierGoogle search for

“buy watch” shown in line 18 of Figure 7.3. The PetSmart ad (occurring twice) and the Miele/Abt

kitchen appliances ad (occurring once) also have a connection to the mobilebrowsing history.

These results are indicative for the occurrence of cross-device tracking. Especially, given that

Google’s AdSense network serves ads for 261 general ad categories, of which only three relate

to pets,[134] the probability that I randomly received the PetSmart ads seems small. However, it

should also be noted that the majority of ads served still seemed generic or served based on the

website context.

Observing Cross-browser Ads.To examine the effect of switching browsers I opened a different

unused browser on the desktop. As before I reloaded the five test homepages and observed the ads

shown to us. Again the Kate Spade ad was shown nearly every time I refreshed AOL. However,

I also received two ads related to the mobile browsing history that I had not seen earlier. The

BestBuy/Samsung ad seems to be due to accessing the Samsung website and thejewelry ad may

be served based on my click on an ad for diamonds. These results seem to imply that the desktop

and mobile were matched independently of the browser used on the desktop.The same appears to

hold for the browsers on the mobile. When I switched browsers on the phone I realized that the

jewelry ad was served many times, which still was the case when deleting cookies, history, and
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cached files on the original phone browser. Curiously, the Zulily ad, which was served on both of

the desktop browsers (and which does not appear to be related to the mobilehistory) kept being

served despite clicking on a dismiss button.

Identifying Ad Networks. Based on the domains of the trackers that were observed from the ads

it is possible to connect the ads to the ad networks that served them. One of the largest networks

that serves ads across devices is the Google Display Network, which indeed receives ad inven-

tory from one of two sources: the DoubleClick Ad Exchange or—as observed—AdSense[133].

Similarly, AOL has its own cross-device capabilities with its Advertising.com platform [35]. The

ads served by Rubicon Project and Skimlinks demonstrate another common theme of the cross-

device tracking environment. Smaller ad networks often have partnershipswith other networks

that have specialized cross-device capabilities; in case of Rubicon Project, Tapad[228], in case of

Skimlinks, Lotame[183]. It should be cautioned, though, that the lack of insight into the ad serv-

ing backends presents an obstacle for making reliable claims on any cooperations beyond what is

publicly known.

Direction of Ad Serving. Having checked ad serving from mobile to desktop I was also interested

in the reverse direction. However, searching Google on the desktop forbuying flowers, boats, and

chocolate did not seem to lead to ads for these products on the mobile browser. I continued to see

ads for refrigerators, jewelry, and pet food. An explanation for this result could be that ad networks

attach more weight to history on the device to which an ad is served and less to other connected

devices. However, this explanation does not seem likely to us. The reasonis that after deleting all

user information from the mobile browser I received generic ads and still no ads for flowers, boats,

or chocolate. It seems that the ad serving was intentionally limited to one direction; from mobile to

desktop. After all, while reasons for switching devices vary, in general,people tend to move from

a smaller to a larger screen.[136; 128]. Also, since cross-device tracking is strongly campaign-

driven it might simply a miss of campaigns at the time. Similarly, as for cross-device tracking

from desktop to mobile I was not able to notice any correlation in ad serving when conducting the

experiment with mobile apps.
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7.2 The CDT Dataset

One of the major reasons for the scarcity of academic research in cross-device tracking—besides

the field being in its infancy—is the lack of publicly available data.2 Generally, only proprietary

industry data exists. Therefore, I decided to collect my own cross-device tracking dataset (the

CDT dataset), which will be provided in anonymized form to interested researchers for further

exploration. I will also make available all data collection software. Here is howthe data was

collected.

Data Collection Procedure. Before starting the data collection Columbia University’s Institu-

tional Review Board permitted it. The collection system was built such that interested users could

sign up on the project website, at which point a device fingerprint for each signed up device was

taken. Users were asked to supply basic information on their demographics(e.g., age, gender,

native language), interests (e.g., finance, games, shopping)[135], and personas (e.g., avid run-

ners, bookworms, pet owners)[264]. In order to capture users’ mobile and desktop history they

were asked to install browser extensions and an app for automatically collecting such information.

Details on the types of information are contained in the appendices.

A limitation of the data collection is that only Android phones are supported and users could

only sign up if they were regularly making use of Android’s native browser, Google Chrome, or

the Samsung S-Browser. I did not support iOS or other operating systems. However, the app only

requires Android 4.0.3 and runs without root access. Every minute it checks whether there is a new

foreground app running on the device. If it detects a new app, it transmitsa new app history data

point to the server. It also checks every minute for new entries in the browsing history database

of the phone’s browsers, which will be transmitted accordingly.3 On the desktop side I provided

users of all operating systems with data collection browser extensions for Google Chrome, Mozilla

Firefox, and Opera. At the conclusion of the study each user received an Amazon gift card for $15

to $50 depending on the length of their study participation.

Dataset Characteristics.The data collection covers a total of 126 users—125 desktop and 108

2The Drawbridge dataset[89] was only accessible to participants of the Drawbridge competition and limited in its use for purposes

of the competition.

3For a few Google Chrome users on Android 6.0 or higher the system did not receive the full browsing history due to browser

restrictions. I asked affected users to send us their history manually.
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Figure 7.4: IPs (top) and domains (bottom) for each user in the dataset. For example,to the right

of Don, 28 users had fewer than ten unique mobile domains; to the right of Peggy, 72 users visited

55 unique mobile domains or fewer.

mobile users with an intersection of 107 users for which both were obtained.4 While the data

reflects reality accurately in the sense that not every Internet user hasmultiple devices, it fails to

represent users in the real world with more than two devices. However, despite this limitation I

believe that it faithfully reflects real multi-device usage on the Internet to a large extent because,

according to an analysis of the Drawbridge data, the vast majority of mobile devices are associated

with only one desktop browser[33]. Therefore, it seems plausible that probabilistic cross-device

tracking companies are currently focusing on correlating two devices. Consequently, this under-

standing of the problem is adopted here as well.

118 users in the study were affiliates of Columbia University; mostly students and a few em-

ployees. Based on this population I believe that the dataset is more homogeneous than a similar

dataset from, say, the general population of New York City. For the medianuser about three weeks

of data were collected of which IP addresses and domains are of particular importance for proba-

bilistic cross-device tracking because they can be used to measure the similarity between devices

(§ 7.3.2). As illustrated in Figure 7.4, for mobile devices IP addresses harborstrong identifying

4Desktop users also include users of laptops.
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Desktop Web Mobile Web Mobile Apps

Users 125 102 104

IPs 1,994 5,784

Domains 23,517 3,876 845

Table 7.1:Summary statistics for unique IPs, users, and domains in the CDT dataset intotal.

Desktop Web Mobile Web Mobile Apps

Days 19,22, 26 9, 17, 23 19,22, 24

IPs 6, 17, 24 25,63, 92

Domains 149,251, 374 9, 31, 70 19,30, 44

Table 7.2: Summary statistics for the CDT dataset per user showing the 25th, 50th, 75thper-

centiles.

potential while desktops are often characterized by their domains. However, there does not seem

to be a correlation between desktop and mobile devices to the effect that lower usage of one would

imply more usage of the other or that both are used to an equal degree.

Tables 7.1 and 7.2 show selected summary statistics for the CDT dataset. It is noteworthy

that the total unique mobile IP count (5,784) nearly triples the total unique desktop IP count

(1,994), which reflects mobile usage on the go.5 However, the high number of unique desktop

domains (23,517), compared to the homogeneous usage of apps (845), underscores the diversity

of desktop browsing. While it is much more diverse in terms of domains (3,876), mobile web

usage pales compared to app usage. As shown by the 25th, 50th, and 75thpercentiles, the median

user accessed the mobile web only for 17 days visiting only 31 unique domains.6 While app usage

is more popular with a median of 22 days, the median usage of 30 unique apps iscomparable to

that of the mobile web. However, the median number of unique mobile IPs (63) more than triples

desktop IPs (17) likely due to usage on the go.

5As there was not a mobile IP for every transmitted data point theunique mobile IP count is likely even higher.

6A day counts if it had at least one desktop web, mobile web, or app access, respectively. Also, uniqueness of a domain depends

on its top and second level, e.g., linkedin.com and blog.linkedin.com are the same domain.
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Desktop Devices Mobile Devices

User Agent 4.46, 0.64, 4.96 6.42, 0.95, 8.43

Display Size/Colors 5.34, 0.77, 6.08 1.7, 0.25, 2.07

Fonts 6.11, 0.88, 7.33 1.2, 0.18, 1.32

Accept Headers 2.86, 0.41, 3.29 2.33, 0.34, 2.99

System Language 0.41, 0.06, 0.51 0.87, 0.13, 1.1

Time Zone 0.25, 0.04, 0.35 0.45, 0.07, 0.73

Mobile Carrier - 2.27, 0.48, 2.4

Overall 6.93, 0.99,11.34 6.61, 0.98,9.44

Table 7.3: Entropy, normalized entropy, and estimated entropy for various browser features on

desktop and mobile devices. For the overall result all features are concatenated.

7.3 Methods for Cross-device Tracking

How is it possible to track Internet users across devices? First, such tracking requires that all

devices of interest can be identified (§ 7.3.1). Second, they also have to be correlated (§ 7.3.2). If

both requirements are met, device tracking transcends into person tracking.

7.3.1 Identifying Devices

HTTP cookies are the traditional mechanism to identify desktop devices. Indeed, many cross-

device tracking companies are employing cookies for their tracking purposes as well. Thus, if

users are allowing cookies, their desktop devices can be easily identified.In order to track mobile

devices the use of advertising identifiers, such as Apple’s Identifier forAdvertising (IDFA), is

common and often combined with cookie tracking. However, as users are increasingly installing

tracking protection and adblocking software, which some consider a mainstream technology on

mobile by now[207], unconventional identification technologies are becoming more prevalent.

While it does not seem that they will generally replace cookies and advertising identifiers any

time soon, they are important supplements. Most notably, various cross-device ad networks—for

example, BlueCava[49] and AdTruth[102]—are making use of device fingerprinting.

Entropy Calculations and Estimations. To get a better understanding of the effectiveness of

fingerprinting techniques used in the context of cross-device tracking Icalculated the Shannon
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entropy for various browser features. It is of particular interest to evaluate mobile and desktop

devices separately to reveal any differences that might exist between the two device types. In

total, the CDT dataset contains 108 mobile device fingerprints and 126 desktop fingerprints.7 For

the mobile fingerprints there were 8 duplicates and for the desktop fingerprints 3. As every mobile

device in the set reveals 6.61 bits of identifying information it can be concluded that the 98th

device (26.61 = 97.68) must be a duplicate. For the desktop that threshold is reached at the 122nd

device.

Table 7.3 shows details of the results.Hn(p) = −
∑n

i=1
pilogbpi/logbn is the normalized

entropy, wherepi = 1/n andb = 2, which will result in a value between 0 (all feature values are

the same) and 1 (all feature values are different). The estimated entropy iscalculated according

to Chao and Shen[64], which is intended to give a prediction beyond the sample of fingerprints.

Based on this estimation the mobile devices in the CDT set have 9.44 identifying bits while desk-

top devices have 11.34. Both the actual entropy as well as its estimate suggest that mobile devices

are overall less identifiable than desktop devices. However, the results also indicate that some

features substantially differ in their impact depending on whether they are used for identifying a

mobile or desktop device.

Entropy Differences between Mobile and Desktop.Particularly, mobile user agents appear to

be far more diverse than user agents on desktops (6.42 vs. 4.46 bits), and, thus, are much more

revealing. One reason is that the phone manufacturer and type of phoneis part of the mobile’s user

agent. However, mobiles usually do not contain extensive amounts of system fonts, which are a

major contributor to the identifiability of desktops (1.2 vs. 6.11 bits); in addition to displays (1.7

vs. 5.34). There are also idiosyncratic features that are only available on one device type. Most

notably, the mobile carrier (2.27 bits) of a phone that can be obtained via reverse IP lookups of

cellular IPs is not present on desktops. For the 27 users in the dataset who provided their fingerprint

on a cellular connection there were six different mobile carriers. It should be noted, though, that

the mobile carrier feature can only be used within the subset of devices thatreveal such. There are

also features that are generally only meaningful for desktops, for example, plugins.

Overall, some features show more diversity in mobile devices while others have more on the

7One user did not submit a mobile fingerprint and one submitted twofor different devices. The latter also submitted an additional

desktop fingerprint.
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Figure 7.5: A. The routine begins with identifying a mobile device. B. The similarity,s, between

the mobile device and each desktop device is calculated. 3. The mobile-desktop pair with the

maximum similarity,max, that is above the similarity threshold,t, is determined. 4. If such pair

exists, it is added to the device graph and the next iteration starts with a new mobile device. This

routine is performed for three similarities: (1) IPs, (2) Web, (3) Apps/Web. If a device can not be

matched in one stage, a match is attempted in the next.

desktop side. Device fingerprinting seems to work sufficiently on mobile devices to be useful

for cross-device fingerprinting, although, likely, more as a supplement tocookie- and advertising

identifier-based techniques. However, in this regard the substantial limitations that we imposed on

users for participating in the study should be considered (i.e., requiring them to allow first party

cookies and JavaScript, run Android 4.0.3 or higher, and use the nativebrowser, Chrome, or the

S-Browser) as well as the conservative approach (i.e., the order in which fonts and plugins were

detected were not used, which might not be necessary[95]), and only a limited set of fingerprint

features was investigated. Thus, entropy in a real-world measurement would likely be higher.

7.3.2 Correlating Devices

After identifying the observed devices, cross-device companies try to match those that appear sim-

ilar, which is the core problem to solve. The goal is to represent all observed devices in a graph

known as Device Graph[9], Connected Consumer Graph[2], Intent & Identity Graph[78], or
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similar proprietary moniker. From a graph-theoretical perspective a device graph is built by creat-

ing connected components (each of which represents a user) with a maximumnumber of vertices

(devices) and edges (connections between devices)[77]. The graph must result in a maximum

weight matching with the weights being similarity scores between devices. In the case here, since

the task is to only connect mobile devices to desktop devices, find the maximum weight matching

for a bipartite graph is the goal.

The CDT Algorithm. The cross-device tracking algorithm (the CDT algorithm) is outlined in

Figure 7.5. In order to determine the similarity between devices I explored various distance mea-

sures[62; 195]—specifically, the Jaccard index, cosine similarity, and the Bhattacharyya coeffi-

cient. The Jaccard index is defined for the setsA andB asJ(A,B) = (A ∩B)/(A ∪B), cosine

similarity is defined for the feature vectorŝA andB̂ ascos(θ) = ÂB̂/‖Â‖‖B̂‖, and the Bhat-

tacharyya coefficient is defined for the distributionsp andq asBC(p, q) =
∑

x∈X

√

p(x)q(x).

Jaccard index and cosine similarity range between 0 (no similarity) and 1 (maximum similarity).

To get a comparable similarity score for the Bhattacharyya coefficient it was normalized for the

range between 0 and 1 as well.

The CDT algorithm works in a staged fashion, that is, it first tries to match devices based on

the similarity of mobile and desktop IPs, then it attempts a matching using the similarity between

mobile and desktop web domains, and finally it tries the similarity between mobile app and desk-

top web domains. Thus, if at one stage a mobile device does not resemble anydesktop device,

that is, none of the similarity scores for the mobile device reached the pre-defined threshold, it

remains to be matched at a later stage. Using a random subset of data from 64 users as training set

I experimented with different settings for matching thresholds and similarity features (e.g., I also

tried system language and time zone). I also tried to exclude certain domains orIPs. When a sat-

isfying performance was achieved the best setting—based on the Bhattacharyya coefficient—was

evaluated on a test set consisting of data from 44 users (the test set). Table 7.4 shows the results

for the test set.

Test Set Results.Running the CDT algorithm on the test set results in an accuracy of 84% with 37

true positives, 0 true negatives, 5 false positives, and 2 false negatives. Precision, recall, and F-1

score are 0.88, 0.95, and 0.91, respectively. The F-0.5 score[169], which emphasizes precision

over recall, reaches 0.91 as well. The results confirm that IP addresses are of critical importance
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IPs Web Apps & Web

Stage 1 2 3

Measure Bhatta Bhatta’ Bhatta*

Thresholdt 0.07 0.13 0.02

Set Size 44 17 8

Match% (Sim) 61% (0.33) 53% (0.16) 13% (0.03)

Table 7.4:Bhatta’ excludes the Alexa Top 50 domains and Columbia University’s domain. Simi-

larly, Bhatta* excludes the most used 100 apps observed in the training set. Set size is the number

of mobile devices to match at the given stage. Match% is the percentage of mobile devices suc-

cessfully matched. Sim is the mean similarity.

for matching devices and are in line with Cao et al.’s results[62], who reached an average F-0.5

score of 0.86 in the Drawbridge competition using only IP features. However, different from the

participants in the Drawbridge competition the results here suggest that visitedweb domains are a

good indicator for device similarity as well. In fact, there are situations in whichthey can be more

revealing than IPs, for example, when users share a household and have the same IP. Domains lead

to the match of another 9 users in the test set. However, as it appears fromthe description of the

Drawbridge competition[158] mobile web history was absent from the competition dataset and,

thus, not tested.

Interpreting Cross-device Tracking Results. The performance results for probabilistic cross-

device tracking must be interpreted against the background of an ad network. A false positive

can occur if a mobile device is similar to an unrelated desktop device. Those mismatches might

happen for people living in the same household (in case of IP similarity) or individuals having the

same interests (in case of web or web/app similarity). However, in these situations a mismatched

device might still be a meaningful ad target[90]. Further, a false negative can be caused by setting

the similarity thresholds too high. Those cases present a tradeoff betweenscale and accuracy.

Setting the thresholds lower will improve scale and setting them higher accuracy. Therefore, it is

not surprising that Dawbridge claims to have a matching accuracy of 97.3%[89]. In fact, changing

the similarity threshold in the third stage of the CDT algorithm fromt = 0.02 to t = 0.2 would

lead to an accuracy of 100%. However, at the same time the number of devicepairs for which a
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IPs Web Apps & Web

Jaccard 60% (0.03) 29% (0.06) 13% (0.01)

Cosine 66% (0.43) 10% (0.46) 5% (0.02)

Bhatta 66% (0.32) 29% (0.42) 6% (0.18)

Bhatta” 64% (0.3) 58% (0.18) 16% (0.12)

Table 7.5:The experiments on the full CDT data with an unstaged complete run for the different

feature types (IPs, Web, Apps & Web) confirm the test results. The Bhatta”analysis excludes the 5

most visited IPs (IPs), the top 100 Alexa U.S. domains and Columbia University’s domain (Web),

and the 100 most used apps (Apps & Web).

match would have been attempted would decrease from 44 to 36 since all device pair similarities

in the third stage were below the threshold oft = 0.2 (they ranged from 0 to 0.16).

Experiments on the Full CDT Data. After performing the evaluation on the test set I pro-

ceeded to experiment with the full dataset. Table 7.5 shows some of the match percentages and

mean similarity scores. Generally, the similarity of IP addresses across devices leads to the most

matches with 66%. However, the similarity of web domains is also a strong signal with 58%

correct matches. This performance was achieved by applying the Bhattacharyya coefficient and

excluding popular domains. The result demonstrates that carefully-crafted features are of utmost

importance for the match accuracy[254]. Different from excluding domains and apps the exclu-

sion of the most frequently occurring IP addresses actually caused the performance to deteriorate.

The combination of features was also not successful leading us to believethat the staged evalua-

tion is a good choice. App usage also did not correlate to desktop web usage as much as expected.

App usage seems to be less diverse than mobile web usage, which providesstronger features.

Generalizability of Results. To make the experiments as realistic as possible they always in-

cluded one user who only had mobile data and no desktop data. In the test set evaluation (Ta-

ble 7.4) that user’s mobile device was incorrectly matched in the third stage to another user’s

desktop. Further, in all experiments, particularly, in each stage of the testset evaluation, desktop

data from 18 users for whom we did not have any mobile data were included. However, it is

obvious that the dataset is orders smaller than the real data that cross-device tracking companies

are ordinarily working with. This difference in size begs the question to which extent the findings
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are applicable to larger datasets. For the similarity of IPs this question was already reliably an-

swered. The Drawbridge competition results, for instance, by Landry etal. [176], are based on a

set of 61,156 mobile devices and confirm the meaningfulness of IP features. For web history fea-

tures the situation is different as the Drawbridge data did not contain those for mobiles. However,

another argument can be made.

Whether web data can be correlated across devices depends on two premises: first, users vis-

iting a subset of domains both on their mobile and desktop devices and, second, domains being

sufficiently diverse to allow meaningful distinction between users. To examine the first premise

I randomly selected 50 U.S. domains out of the top 5,000 sites that were quantified by Quant-

cast[217] and observed a mean of 17.1% users visiting a website both on a mobile and desktop

device during a 30-day period. At the 95% confidence level using the bootstrap technique this

finding translates to lower and upper bounds of 14.4% and 19.5%, respectively, meaning that in

95% of the cases the true estimate of a user visiting a site on both mobile and desktopdevices

is between 14.4% and 19.5%. Thus, it appears that visiting websites is a broadly occurring phe-

nomenon. As to the second premise, all 102 users in the dataset who visited at least one mobile

website had a unique web history. The resulting entropy is 6.67 bits and the estimated entropy

according to Chao and Shen[64] comes out at 13.41 bits. Given this information gain there is also

a reasonable claim to be made that web data is extent distinctive enough to distinguish thousands

of devices, especially, as not even full URLs were considered.

Practical Considerations and Limitations. Finally, there are various considerations of identi-

fying and correlating devices in practice. Extreme sparse and large-scale data make user cross-

device matching a challenging problem.[232]. In this regard, the CDT algorithm has a runtime of

O(n(n − 1)/2). Also, as discussed in more detail below (§ 7.5), despite the broad coverage that

some cross-device trackers have, by no means do they have access to all IP, web, and app data of

users. In this sense, the task here was easier. However, I did not have a full IP history either as the

IP address was not collected with every data point that was submitted. Also,through the confined

space and users being mostly students from one University the data is probably more homogenous

than real data would be. Another consideration concerns the time periods that data covers. In this

regard, it remains unknown for which duration cross-device companiescan track users.
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Figure 7.6: About half of all users with an Interest in finance access respective domains only on

their desktop while the other half is using both mobile (app or web) and desktop devices. However,

no user is accessing those domains exclusively from a mobile device, whichalso holds for personal

finance geeks. For singles and value shoppers the picture looks different, though. Most are using

either a mobile or desktop device, however, not both.

7.4 Learning from Cross-device Data

Cross-device tracking can be more privacy-invasive than traditional tracking of individual devices.

After all, cross-device companies are potentially able to obtain a fuller pictureof a person and

learn much more than they could by only observing unconnected devices. As discussed in the

previous section, the average user accesses about a sixth of all websites on both mobile and desktop

devices. However, it is also true that people are using different devices for different purposes.

This phenomenon is illustrated in Figure 7.6 for users in the dataset that expressed an interest in

finance, value shopping, and dating. In terms of methodology, I used Alexa category rankings[29]

and Google Play store categories[137] to identify 25 domains for each of these interests that have

both a website and an app. Then, I checked for the users in the dataset how often, if at all, they

access these domains from their different devices. The result suggests that having data available

from both mobile and desktop devices could indeed increase the predictivepower in machine

learning experiments (assuming that the respective domains are used as features).

Increase in Predictive Accuracy. Indeed, the results in Figure 7.7, which are based on 10-fold

cross validation, indicate that predicting an interest in finance for users inthe dataset is more

accurate if both desktop and mobile data is available. The results are based on using the 25

financial domains as starting point for feature creation on the Weka machinelearning toolkit[142].
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Features Acc Prec Rec F-1 ROC

Mob 90 64.5% 0.26 0.22 0.24 0.5

Desk 106 74.8% 0.5 0.52 0.51 0.68

Mob&Desk 107 83.2% 0.68 0.63 0.65 0.79

Figure 7.7: Logistic regression for predicting an interest in finance from app and web domains.

As before, mobile data (Mob) includes both mobile web and apps and desktop data (Desk) covers

desktop web domains. The F-1 score for predictions based on both typesof data is substantially

higher than predictions from each source individually. The three ROC curves visualize this finding

(left: Mob, middle: Desk, right: Mob&Desk). True positives are displayed on the y-axis and false

positives on the x-axis. The results for the positive cases, that is, predictingthat users have an

interest in finance, are shown in orange while the negative predictions for not having an interest

in finance are displayed in blue. As can be observed from the ROC curves, especially, the former

benefits from having both mobile and desktop data available.

I tried various feature engineering techniques and all standard algorithms, among which were

logistic regression, stochastic gradient descent, support vector machines, various versions of naive

Bayes, and various tree-based algorithms, such as random forest. Logistic regression turned out

to be the classifier with the best performance. Due to the class imbalance of only 23% users

expressing an interest in finance I ran logistic regression as a cost-sensitive classifier increasing

the cost for a false positive of 1.5 times over the cost for a false negative. Certainly, the results

can be improved. However, what I want to show here is that it is an advantage to have data from

various sources. The advantage is quantitative as there are simply more datapoints available.

However, it is also qualitative because it allows the creation of more characteristic features as

evidenced by the nearly equal number of desk and mob&desk features (106 vs. 107).

Compensating for the Lack of Cross-device Data.While the results indicate that predictive

performance increases with the availability of both desktop and mobile web data, it appears that
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Features Acc Prec Rec F-1 ROC

Desk 3,395 75.7% 0.79 0.76 0.76 0.87

Mob&Desk 3,006 76.6% 0.81 0.77 0.77 0.87

Desk 5,929 84.1% 0.84 0.84 0.84 0.89

Figure 7.8: Accuracy, precision, recall, and F-1 score are based on the average for the men and

women classes as weighted by the number of instances in those classes. The ROC curves are

visualizing the ROC areas for women (top) and men (bottom). From left to right the curves are for

desktop web domains with 3,395 features, mobile and desktop domains with 3,006 features, and

desktop domains with 5,929 features.

the use of higher-dimensional feature vectors on desktop data can sometimes compensate and even

outperform these results. Using logistic regression it is possible to predictthe gender of users.

Since there are about one third women and two thirds men the algorithm is adjusted for the gender

skew by penalizing the misclassification of a woman as a man 1.5 times of the misclassification

of a man as a woman. The results in Figure 7.8, which are based on 10-fold cross validation,

show that doubling the number of features in the desktop web domains relative to the number of

domains used in the mobile and desktop domain combination data increases the F-1score from

0.77 to 0.84. However, holding the number of features constant at aboutthe same level (3,395

vs. 3,006) demonstrates the higher value in the combined desktop and mobile features. From

the perspective of an ad network or analytics provider it is certainly of interest to work with low-

dimensional data to avoid performance bottlenecks.

Learning Sensitive Information. From the results it appears that sensitive traits of a person,

such as ethnicity or religion, can be much better inferred with web domain data from two types
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Accuracy Precision Recall F-1 ROC

Chinese 87.5% 1 0.88 0.93 0.96

English 91.3% 0.91 0.91 0.91 0.78

Indian 44.4% 0.4 0.44 0.42 0.65

Weight Avg 86% 0.87 0.86 0.86 0.79

Table 7.6:Logistic regression results for predicting a user’s native language from visited domains

based on data from both mobile devices (web and app) and desktop devices (web). I used 10-fold

cross validation.

of devices than from one. Table 7.6 shows results for predicting the native languages spoken by

users in the dataset, which can be used to infer ethnicity. Using 25 popular domains for each of

the U.S., China, and India that have an app and a website to create meaningful features (116), the

results for using mobile and desktop features were better than for mobile alone (weighted average

F-1 0.78) and desktop alone (weighted average F-1 0.83). However, the results are based on a

small sample of 86 native speakers (8 Chinese language origin, 9 Indian language origin, and 69

English). Interestingly, the prediction of Indian users did not perform as well as the identification

of Chinese users. I believe that the reason is that Chinese users have acommon core of domains

they use (e.g., Baidu and Tencent), which is not the case for Indian users making it harder to

identify the latter.

Accessing religious web domains and apps can be an obvious predictor for adherence to a

particular faith. However, such predictions are also possible based on subtler user behaviors.

Most notably, as the data collection for the study covered the last two days of the Jewish Passover

holiday a few users in the study did not use both of their signed up devices as the Jewish faith

prescribes abstinence from using electronics. Among all users in the study who were signed up

at the time the pattern of holiday observation became very clear. This signal ismore clear given

the insight into multiple devices because during the two days of Passover someusers did not use

one of their devices, however, used the other. Only those users observant of Passover did not use

both devices. In this sense, cross-device tracking can be more privacy-invasive than the tracking

of unconnected individual devices and can also lead to a privacy violation, which is also true for

cross-device tracking companies’ observation of users ethnicities.
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7.5 A Small Glimpse into the Scope of Cross-device Tracking on the

Internet

The degree to which cross-device tracking is permeating the Internet is unknown. While I leave

a comprehensive inquiry for another day, some initial inroads will be provided. I crawled the

websites and apps in the dataset for their inclusion of third party trackers (§ 7.5.1) and analyzed

potential cross-device usage, particularly, accounting for industry collaborations and consolidation

(§ 7.5.2).

7.5.1 Obtaining Third Party Tracking Data

In order to examine the extent to which cross-device tracking is happeningI examined the trackers

on the domains and apps that the users in the study visited. Automating a Firefoxbrowser with

Selenium[231] as well as a Lightbeam[197] and user agent switcher[198] browser extension I

recorded the trackers on each domain. Third party connections found ina subdomain were added

to the domain, however, not vice versa. Thus, for example, the domain linkedin.com contains all

trackers on blog.linkedin.com but not the other way around. Both desktopand mobile sessions

were started with a fresh browser that did not contain any user data. Forthe desktop crawl a

Windows 10 user agent simulated and for the mobile crawl an Android Nexus5 user agent.

Limitations. One limitation of the approach is that some websites were not accessible (e.g., sites

that required a user login). In some cases the crawl was also redirectedor the requested page

was not found. However, these limitations only affected few URLs. Also, itshould be noted

that the crawl of the sites was conducted about a month after finishing collecting data from the

study participants. Thus, in the meantime, some websites might have different trackers than at the

time they were actually visited. Ideally, it would have been possible to capture the trackers live

from the devices of the users. However, such recording is an expensive proposition in terms of

mobile device performance, and, especially, the constraints of the Androidenvironment (e.g., the

sandboxing of browser apps) make it difficult to capture trackers directly on the device.

Data Collection Procedure. For detecting trackers inside of apps I selected a total of 153 third

party sdks listed on AppBrain[36] encompassing sdks of ad networks (e.g., LiveRail), social

networks (e.g., Twitter), analytics services (e.g., comScore), crash reporters (e.g., Crashlytics), and
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Figure 7.9: Total unique third party trackers in the dataset. 2,571 trackers occurredon both

desktop and mobile websites. Out of the 153 sdks from AppBrain 81 acre contained in the dataset.

26 intersected with the desktop websites, and 22 were present on desktopand mobile websites as

well as in apps. For the most part, system apps, banking apps, and apps by the phone manufacturer

did not contain trackers.

payment processors (e.g., Amazon In-App Purchasing). Then, I crawled the AppBrain statistics to

determine which of the libraries are included in the apps of the users in the study. The approach for

detecting trackers should be understood as a lower bound for various reasons. First, trackers not

identified in Lightbeam and sdks not included in the set of 153 will remain undetected. Second,

apps are limited to tracking via sdks and does not account for WebViews and app-internal browsers

that could also contain tracking cookies[77]. Third, the reach of companies’ tracking activity is

not always clear due to unknown industry collaborations or backend data exchanges. Finally, I

rely on companies’ representation that they track users across devicesand do not make any own

independent determination beyond detecting the presence of their trackers.

7.5.2 The Converging Cross-Device Ecosystem

As shown in Figure 7.9, the mobile websites in the dataset (3,876 per Table 7.1)contained 3,243

unique third party trackers. 2,571 of those were also present on desktop websites. Thus, there

appears to be a large number of cross-device trackers across mobile and desktop websites. The

number of trackers inside the apps in the dataset is substantially smaller, clearly, as a consequence
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Desk Web Mob Web Mob Apps

BlueCava 0.2% 0.5% -

comScore 11.3% 15.1% 1.7%

Flurry Analytics - 0.3% 4.3%

comScore & Flurry 11.3% 15.1% 6.1%

Google Analytics 58% 43.6% 5.1%

Facebook 21.4% 17.1% 20.3%

LiveRail 1% 1.6% 0.3%

Facebook & LiveRail 21.6% 17.7% 20.3%

PayPal 1.1% 0.6% 0.9%

Tapad 1.1% 1.9% -

Apsalar - - 0.3%

Tapad & Apsalar 1.1% 1.9% 0.3%

Twitter 11.5% 6% 0.7%

Table 7.7: Companies’ percentage for covering websites and apps for the averageuser in the

dataset (out of the 107 users for which both mobile and desktop domains were collected.)

of the limited set started out with.8 While many unique trackers across device boundaries were

detected this finding does not allow a claim on how broadly cross-device companies disseminated

their trackers.

Tracking of the Average User in the Dataset.For an illustrative cross-section of cross-device

tracking companies—some smaller, some bigger, some deterministic, some probabilistic—I cal-

culated the percentage that each user in the dataset is tracked across hisor her different devices.

Table 7.7 shows the results. We see the phenomenon of a few general ad companies having a broad

scope of trackers while specialized cross-device tracking companies have a smaller market share.

The former is clearly represented by Google and Facebook on the deterministic spectrum of cross-

device tracking and comScore on the probabilistic end. An example for the latter is Tapad. Also,

the detection of BlueCava fingerprinting scripts on both mobile and desktop websites confirms

Acar et. al’s claim[21] that one of the use cases for fingerprinting consists of reaching customers

8The app tracker count includes affiliated company’s sdks. Thus, for example, the Facebook sdk inside the Instagram app is

counted as a tracker.
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across devices.

Industry Collaborations and Consolidation. Evaluating the results in light of known industry

collaborations demonstrates something else: partnerships are often complementary. For example,

while comScore’s cookies are a mainstay on both the desktop and mobile web, their reach into mo-

bile apps is much more limited. As the opposite is true for Flurry Analytics it makes a lot of sense

that both are collaborating in their cross-device efforts as part of the Flurry Pulse platform[263].

A similar observation, albeit on a smaller scale, can be made for the cooperation between Tapad

and Appsalar[56]. Sometimes, such strategic partnerships also come into existence through one

company acquiring another, for example, in the case of Facebook’s acquisition of LiveRail.

This acquisition also shows that the line between probabilistic and deterministic cross-device

tracking is not as clear-cut as the dichotomic usage of the terms suggest. LiveRail receives some

user data from Facebook to track users probabilistically[104]. However, Facebook’s deterministic

tracking might profit from LiveRail as well. After all, some Internet usersdo not have a Facebook

account, in which case they still can be tracked probabilistically. In general, whether through

collaboration or acquisition the ad industry is experiencing a consolidation and concentration that

broadens companies’ access to cross-device data. This development makes privacy protection

more challenging.

7.6 Does Self-Regulation Work?

In the U.S. there are no statutes or regulations for cross-device tracking, but rather the field is

subject to self-regulation, most notably by the Digital Advertising Alliance (DAA) and the Net-

work Advertising Initiative (NAI). A hallmark of the U.S. privacy regime is thenotion of data

transparency vis-à-vis web consumers. In fact, according to a recent guidance, the DAArequires

cross-device companies to disclose “the fact that data collected from a particular browser or de-

vice may be used with another computer or device that is linked to the browser or device on

which such data was collected.”[88] I examined compliance with this transparency requirement

for 40 randomly selected ad networks with DAA membership that advertised their cross-device

capabilities.

Specifically, I manually checked if they disclose their cross-device tracking activity in their
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privacy policies or opt-out statements. While 23 did so, 17 omitted to mention cross-device track-

ing at all. After contacting these 17 companies, I received feedback from four. One ad network

simply claimed that they are “not violating anything.” Another amended its policy as required

per the DAA without explicitly getting back to us. A third company explained to us that their

cross-device functionality is not yet rolled out to clients. Finally, a fourth ad network notified

us that they will update their policy once the NAI’s cross-device code of conduct would become

available.

Based on the interpretation of the DAA guidance, I find indications that thereis some lack of

transparency when it comes to the disclosure of cross-device tracking.It does not seem to be the

case that the DAA guidance is rigorously enforced. To be clear, the vast majority of consumers

will likely not take the time to understand the tracking practices on a per-company level either way.

Using tracking and ad blockers is a much more efficient approach from a consumer perspective.9

However, for audit and enforcement purposes as well as to gain trustin the marketplace I think

that it is certainly a worthwhile endeavor for companies to properly disclosetheir practices.

7.7 Conclusion

Figure 7.10: This thesis discusses how ad networks are crossing device boundarieswithin the

online space. However, there are also early attempts to cross the online-offline boundary.

This chapter can be considered as groundwork for developing privacy protections for cross-

device tracking. Among others, I have demonstrated how to identify cross-device tracking. This

identification can be implemented in an ML classifier. Overall, cross-device tracking challenges

9Thus, if one wants to think of cross-device tracking in terms of a threat model, the most effective defense would be to block

tracking. In this sense, the defenses against cross-devicetracking are the same as the defenses against the tracking of individual

devices.
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current notions of Internet privacy. The various angles discussedhere are all deserving of a more

detailed and comprehensive examination than could be done here. Especially, as shown—whether

it is the correlation of devices or the learning from data—the machine learningtechniques applied

for purposes of cross-device tracking have notable privacy implications. Thus, I understand the

work here as a tour d’horizon of the cross-device tracking landscape. I highlighted some aspects

that I believe to be particularly important; others are left open. For example,there are various ad

preference managers that allow consumers insights into how they are tracked by individual com-

panies (e.g. the BlueKai Registry[205]). It would be interesting to see whether these preference

managers can be leveraged to understand data flows between companies.

Proprietary research in cross-device tracking is way ahead of academia. While a few big points

are known (for example, that IP addresses are the most crucial feature for correlating devices),

many details on how ad networks operate in this space remain opaque. To shed more light on the

subject I will publicize the dataset (in anonymized fashion) together with the developed software

for further exploration. As cross-device tracking matures and becomesan integral part of tracking

on the Internet I advocate for a comprehensive view of the phenomenon that also includes the

legal environment. Establishing an enforceable self-regulatory framework for companies to be

transparent about their practices will help to protect consumer privacyand allow ad networks to

earn their advertising dollars responsibly. Thus, I believe the FTC’s current approach is the right

one.
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Chapter 8

Conclusions

It is the thesis of this dissertation that Internet privacy can be improved based on the use of ML

technologies (in many cases in tandem with other technologies, such as static code analysis, as

illustrated in Chapter 6). First, in a case study I have demonstrated how ML classifiers can be

used to identify ethnicity- and gender-specific location patterns (Chapter 3). I also showed how

ML can be leveraged for purposes of quantifying privacy-invasiveness (Chapter 4), particularly,

as part of the mosaic theory and in combination with privacy metrics, such ask–anonymity[241].

Further, in order to improve privacy transparency I described a system to automatically analyze

privacy policies using ML classifiers (Chapter 5). The policy analysis results can be compared to

actually occurring practices on websites, mobile apps or other software (Chapter 6). This type of

comparison enables regulators to hold software publishers accountable for their privacy practices.

Finally, I explored the foundations for developing PETs for a rarely investigated but increasingly

common practice: cross-device tracking (Chapter 7).

Internet privacy is a multi-dimensional concept. It transcends the boundaries of various aca-

demic disciplines and is characterized by sociological, legal, and engineering aspects—to name

a few. In addition, there are also many different technologies affecting it:web tracking, crypto-

graphic protocols, and social networks are some examples. In this dissertation I am interpreting

privacy as a legal right. It is my thesis that privacy can be advanced based on ML technologies.

It is the central theme of this work to explore the uses of ML to advance privacy. Thus, while it

is true that privacy is threatened by machine learning technologies, those same technologies can

also be used to improve privacy.
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Ultimately, the inter-connectedness of devices and the penetration of many wakes of life by

data collection and sharing mechanisms raises privacy challenges of a newquality. In this regard,

cross-device tracking can be seen as an early harbinger of the Internet of Things (IoT). Ensuring

transparency and practicable control mechanisms for information that is traversing device bound-

aries and permeates in and out of the offline world, as depicted in Figure 7.10, is in its infancy.

The massive volume of granular data allows those with access to it to performML analyses that

would not have been possible before[117]. However, in this environment the FTC will continue to

place emphasis on the notice and choice principle[117]. Lacking interfaces of many IoT devices

would require companies to give notice in different way[117]. Given the understanding of the

IoT as “a world-wide network of interconnected objects uniquely addressable, based on standard

communication protocols[152],” privacy notices and choice should evolve into comprehensive

personal privacy assistants: they will perform ML privacy policy analysis, check whether devices

adhere to what is claimed in the policies, or establish or deny connection between devices.

What is needed is an intelligent and scalable mechanism that empowers usersto efficiently and

accurately obtain data processing information and control. Such mechanismcould warn users if it

detects, for example, as discussed in Chapter 3, that sensitive informationcould be inferred from

certain collected data. A hallmark of this new paradigm is the application of ML to relieve the user

from being constantly involved in privacy decisions[19]. A device could learn a user’s preferences

on one device (e.g., data should not be shared with third party advertisers) and use those as default

preferences on all devices[117]. Another example could be a central appliance hub that stores

data locally and learns preferences based on prior behavior and predict future privacy preferences

as new appliances are added to the hub[117]. Along these lines I envision an intelligent personal

privacy assistant that is deployable in the current and future IoT environment.

The privacy assistant could be comprised of a central control unit (e.g., an app on a phone)

connected to all other devices (e.g., cars, smartwatches, Wi-Fi routers,household appliances,

cars) that resolves privacy settings and new privacy queries basedon user input and learned

privacy preferences. For difficult questions the user will be alerted and the control unit con-

tinues to learn based on user input. It obtains the data, analyzes them, and acts on them ac-

cording to the user preferences. Such privacy assistant must understand natural language pri-

vacy policies as well as interface with APIs of other domains (e.g., cars, appliances). Thus,
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developing such assistant is partly a question of operating system research and standard set-

ting. Opening APIs and their standardization is necessary, which is a policyproblem and very

likely not completely solvable. However, various standards are currentlyin development[4;

14] and open for privacy considerations. The capability of devices interacting with each other—in

many cases without human input—should be developed in tandem with intelligent privacy assis-

tants that can act on the same premises.
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[123] Simone Fischer-Ḧubner and Harald Zwingelberg. UI prototypes: Policy administration and

presentation - version 2. Technical Report D4.3.2, Karlstad University, 2010.

[124] J.L. Fleiss. Measuring nominal scale agreement among many raters.Psychological Bulletin,

76(5):378–382, 1971.

[125] E. Francesconi and A. Passerini. Automatic classification of provisions inlegislative texts.

Artif. Intell. Law, 15(1):1–17, March 2007.

[126] Simson Garfinkel and Heather Richter Lipford.Usable Security. Morgan & Claypool,

2014.

[127] Robert Gellman. Fair information practices: A basic history.http://bobgellman.

com/rg-docs/rg-FIPShistory.pdf, June 2016. Last accessed: March 6, 2017.

https://www.ftc.gov/news-events/blogs/business-blog/2015/09/kids-apps-disclosures-revisited
https://www.ftc.gov/news-events/blogs/business-blog/2015/09/kids-apps-disclosures-revisited
https://www.ftc.gov/news-events/blogs/business-blog/2015/09/kids-apps-disclosures-revisited
https://www.ftc.gov/system/files/documents/reports/big-data-tool-inclusion-or-exclusion-understanding-issues/160106big-data-rpt.pdf
https://www.ftc.gov/system/files/documents/reports/big-data-tool-inclusion-or-exclusion-understanding-issues/160106big-data-rpt.pdf
https://www.ftc.gov/system/files/documents/reports/big-data-tool-inclusion-or-exclusion-understanding-issues/160106big-data-rpt.pdf
https://www.ftc.gov/system/files/documents/reports/big-data-tool-inclusion-or-exclusion-understanding-issues/160106big-data-rpt.pdf
https://www.ftc.gov/news-events/press-releases/2016/03/ftc-issues-warning-letters-app-developers-using-silverpush-code
https://www.ftc.gov/news-events/press-releases/2016/03/ftc-issues-warning-letters-app-developers-using-silverpush-code
https://www.ftc.gov/news-events/press-releases/2016/03/ftc-issues-warning-letters-app-developers-using-silverpush-code
http://bobgellman.com/rg-docs/rg-FIPShistory.pdf
http://bobgellman.com/rg-docs/rg-FIPShistory.pdf


BIBLIOGRAPHY 147

[128] Gesellschaft f̈ur Konsumforschung. Finding simplicity in a multi-device world.https://

blog.gfk.com/2014/03/finding-simplicity-in-a-multi-device-

world/, March 2014. Last accessed: March 6, 2017.

[129] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androidleaks: Automati-

cally detecting potential privacy leaks in android applications on a large scale. In Proceed-

ings of the 5th International Conference on Trust and Trustworthy Computing, TRUST’12,

pages 291–307, Berlin, Heidelberg, 2012. Springer-Verlag.

[130] DW Gibson. ’i put in white tenants’: The grim, racist (and likely illegal) methodsof

one brooklyn landlord.http://nymag.com/daily/intelligencer/2015/05/

grim-racist-methods-of-one-brooklyn-landlord.html, May 2015.

[131] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled classi-

fication. InProceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and

Data Mining, pages 22–30, Berlin, Heidelberg, Germany, 2004. Springer.

[132] Dan Goodin. Researchers find 256 ios apps that collect users personal info. http://

arstechnica.com/security/2015/10/researchers-find-256-ios-

apps-that-collect-users-personal-info/, Oct 2015. Last accessed:

March 6, 2017.

[133] Google, Inc. Display inventory and ad formats on the google display network.

https://support.google.com/partners/answer/172610?hl=en. Last

accessed: March 6, 2017.

[134] Google, Inc. General ad categories.https://support.google.com/adsense/

answer/3016459?hl=en. Last accessed: March 6, 2017.

[135] Google, Inc. Topics used for personalized ads.https://support.google.com/

ads/answer/2842480?hl=en. Last accessed: March 6, 2017.

[136] Google, Inc. The new multi-screen world study.https://www.thinkwithgoogle.

com/research-studies/the-new-multi-screen-world-study.html,

August 2012. Last accessed: March 6, 2017.

https://blog.gfk.com/2014/03/finding-simplicity-in-a-multi-device-world/
https://blog.gfk.com/2014/03/finding-simplicity-in-a-multi-device-world/
https://blog.gfk.com/2014/03/finding-simplicity-in-a-multi-device-world/
http://nymag.com/daily/intelligencer/2015/05/grim-racist-methods-of-one-brooklyn-landlord.html
http://nymag.com/daily/intelligencer/2015/05/grim-racist-methods-of-one-brooklyn-landlord.html
http://arstechnica.com/security/2015/10/researchers-find-256-ios-apps-that-collect-users-personal-info/
http://arstechnica.com/security/2015/10/researchers-find-256-ios-apps-that-collect-users-personal-info/
http://arstechnica.com/security/2015/10/researchers-find-256-ios-apps-that-collect-users-personal-info/
https://support.google.com/partners/answer/172610?hl=en
https://support.google.com/adsense/answer/3016459?hl=en
https://support.google.com/adsense/answer/3016459?hl=en
https://support.google.com/ads/answer/2842480?hl=en
https://support.google.com/ads/answer/2842480?hl=en
https://www.thinkwithgoogle.com/research-studies/the-new-multi-screen-world-study.html
https://www.thinkwithgoogle.com/research-studies/the-new-multi-screen-world-study.html


BIBLIOGRAPHY 148

[137] Google Play store.https://play.google.com/store/apps?hl=en. Last ac-

cessed: March 6, 2017.

[138] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and

Martin Rinard. Information-flow analysis of Android applications in DroidSafe. In Pro-

ceedings of the 22nd Annual Network and Distributed System Security Symposium (NDSS),

2015.

[139] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking app be-

havior against app descriptions. InProceedings of the 36th International Conference on

Software Engineering, ICSE 2014, pages 1025–1035, New York, NY, USA, 2014. ACM.

[140] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Unsafe exposure

analysis of mobile in-app advertisements. InProceedings of the Fifth ACM Conference on

Security and Privacy in Wireless and Mobile Networks, WISEC ’12, pages 101–112, New

York, NY, USA, 2012. ACM.

[141] Griffin v. Wisconsin. 1987. 483 U.S. 868.

[142] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, PeterReutemann, and

Ian H. Witten. The WEKA data mining software: An update.SIGKDD Explor. Newsl.,

11(1):10–18, November 2009.

[143] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable website fingerprint-

ing technique. In25th USENIX Security Symposium (USENIX Security 16), pages 1187–

1203, Austin, TX, August 2016. USENIX Association.

[144] P. Hoffman, M.A. Lambon Ralph, and T.T. Rogers. Semantic diversity: A measure of

semantic ambiguity based on variability in the contextual usage of words.BRM, 45(3):718–

730, 2013.

[145] Candice Hoke, Lorrie Cranor, Pedro Leon, and Alyssa Au. Are TheyWorth Reading? An

In-Depth Analysis of Online Trackers Privacy Policies.I/S : a journal of law and policy for

the information society, April 2015.

https://play.google.com/store/apps?hl=en


BIBLIOGRAPHY 149

[146] Leif-Erik Holtz, Katharina Nocun, and Marit Hansen. Towards displaying privacy infor-
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[246] Connor Tumbleson and Ryszard Wiśniewski. Apktool. https://ibotpeaches.

github.io/Apktool/. Last accessed: March 6, 2017.

[247] United States Census Bureau. 2010 census. http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml,

2010.

[248] United States v. Jones. 1970. 397 U.S. 358, 370 (Harlan, J., concurring).

[249] United States v. Jones. 2012. 132 S. Ct. 945.

[250] United States v. Jones. 2012. 132 S. Ct. 945, 955 (Sotomayor, J., concurring) (quoting

People v. Weaver, 12 N.Y.3d 433, 441-42 (2009)).

[251] United States v. Jones. 2012. 132 S. Ct. 945 (Alito, J., concurring).

[252] United States v. Knotts. 1983. 460 U.S. 276.

[253] United States v. Maynard. 2010. 615 F.3d 544, 562.

[254] Jeremy Walthers. Learning to rank for cross-device identification. InIEEE International

Conference on Data Mining Workshop, ICDMW 2015, Atlantic City, NJ, USA,November

14-17, 2015, pages 1710–1712, 2015.

[255] Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, and Tatsuya Mori. Understanding

the inconsistencies between text descriptions and the use of privacy-sensitive resources of

mobile apps. InEleventh Symposium On Usable Privacy and Security (SOUPS 2015),

pages 241–255, Ottawa, July 2015. USENIX Association.

[256] Eline Westerhout. Definition extraction using linguistic and structural features. InProceed-

ings of the 1st Workshop on Definition Extraction, WDE ’09, pages 61–67, Stroudsburg,

PA, USA, 2009. ACL.

[257] Eline Westerhout. Extraction of definitions using grammar-enhanced machinelearning. In

Proceedings of the 12th Conference of the European Chapter of the Association for Com-

putational Linguistics: Student Research Workshop, EACL ’09, pages 88–96, Stroudsburg,

PA, USA, 2009. ACL.

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/


BIBLIOGRAPHY 161

[258] Alan F. Westin.Privacy and freedom. Atheneum, New York, 1970.

[259] Michael J. White. Segregation and diversity measures in population distribution. Population

Index, 52(2):198–221, 1986.

[260] Shomir Wilson, Florian Schaub, Aswarth Abhilash Dara, Frederick Liu, Sushain Cherivi-

rala, Pedro Giovanni Leon, Mads Schaarup Andersen, Sebastian Zimmeck, Kan-

thashree Mysore Sathyendra, N. Cameron Russell, Thomas B. Norton, Eduard Hovy, Joel

Reidenberg, and Norman Sadeh. The creation and analysis of a website privacy policy

corpus. InProceedings of the 54th Annual Meeting of the Association for Computational

Linguistics, ACL ’16, Berlin, Germany, August 2016. ACL.

[261] Shomir Wilson, Florian Schaub, Rohan Ramanath, Norman Sadeh, Fei Liu, Noah A. Smith,

and Fredrick Liu. Crowdsourcing annotations for websites’ privacy policies: Can it really

work? InWWW ’16: 25th International World Wide Web Conference, 2016.
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Appendix A

Datasets used in§ 6

A.1 Policy and App Datasets

1. Full App Set - Total Apps Collected (n=17,991)

2. Full Policy Set - Policies Obtained via the Play Store Policy Link for the Appsin the Full

App Set (n=9,295)

3. Full App/Policy Set - App/Policy Pairs from the Full App and Policy Sets adjusted for Links

not leading to a Policy (n=9,050)

4. App Test Set - Random Apps from the Publishers in the Policy Test Set(n=40)

5. Policy Test Set - Random Policies from the OPP-115 Corpus (n=40)

6. App/Policy Test Set - Apps from the App Test Set and Associated Policies from the Policy

Test Set (n=40)
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Appendix B

Cross-device Tracking Dataset Details

(§ 7)

B.1 Device Fingerprint

1. User Agent

2. Browser Engine

3. Installed Browser Plugins

4. Installed Adobe Flash Plugin/Version

5. Installed Microsoft Silverlight Plugin/Version

6. Flash Cookies Enabled

7. Time Zone

8. Screen (Color Depth, Screen Dimensions)

9. System Language

10. First Party HTTP Cookies Enabled

11. Third Party HTTP Cookies Enabled

12. JavaScript Enabled

13. Java Enabled

14. Do Not Track Enabled

15. Touch Enabled

16. Latency (Request Duration, Roundtrip Duration)
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17. Installed Fonts

18. IP Address

19. HTML5 Web Storage Enabled (Local, Session)

20. HTML5 Geolocation Enabled (Latitude, Longitude)

21. HTTP Accept Headers

22. Internet Connection Type (Wi-Fi, Cellular)

23. Internet Service Provider

B.2 App and Browsing History

1. IP Address

2. Browser Vendor

3. Date

4. Time

5. Time Zone

6. Browser Tab ID

7. Full HTTP Referrer URL

8. Full URL/App Package Name

9. URL Title

10. Third Party Trackers/SDKs

11. App/URL Mapping

B.3 Google Interest Categories (n = 126 users)

1. Arts and Entertainment (68%)

2. Food and Drink (64%)

3. Computers and Electronics (63%)

4. Science (62%)

5. News (60%)

6. Books and Literature (55%)

7. Jobs and Education (52%)
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8. Games (43%)

9. Travel (40%)

10. Law and Government (37%)

11. Shopping (36%)

12. Hobbies and Leisure (34%)

13. People and Society (34%)

14. Beauty and Fitness (33%)

15. Internet and Telecom (33%)

16. Sports (29%)

17. Online Communities (24%)

18. Finance (23%)

19. Pets and Animals (23%)

20. Business and Industrial (21%)

21. World Localities (15%)

22. Reference (13%)

23. Autos and Vehicles (11%)

24. Home and Garden (11%)

25. Real Estate (4%)

B.4 Flurry Analytics Personas (n = 126 users)

1. Music Lovers (47%)

2. Movie Lovers (46%)

3. Food and Dining Lovers (40%)

4. Singles (39%)

5. Bookworms (33%)

6. Entertainment Enthusiasts (31%)

7. Tech and Gadget Enthusiasts (31%)

8. Casual and Social Gamers (30%)

9. News and Magazine Readers (23%)
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10. Leisure Travelers (21%)

11. Sports Fans (21%)

12. Health and Fitness Enthusiasts (20%)

13. Mobile Payment Makers (19%)

14. Value Shoppers (18%)

15. Parenting and Education (15%)

16. Pet Owners (14%)

17. Business Professionals (13%)

18. American Football Fans (11%)

19. Hardcore Gamers (11%)

20. Photo and Video Enthusiasts (11%)

21. Fashionistas (10%)

22. Personal Finance Geeks (10%)

23. Avid Runners (7%)

24. Flight Intenders (6%)

25. Social Influencers (6%)

26. Catalog Shoppers (5%)

27. Auto Enthusiasts (3%)

28. Business Travelers (3%)

29. Small Business Owners (3%)

30. Home Design Enthusiasts (2%)

31. Real Estate Followers (2%)

32. High Net Individuals (1%)

33. Mothers (1%)

34. Home and Garden Pros (0%)

35. New Mothers (0%)

36. Slots Players (0%)
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B.5 Native Language (n = 126 users)

1. English (64%)

2. Chinese Origin (8%)

3. Indian Origin (8%)

4. Greek (3%)

5. Spanish (3%)

6. French (2%)

7. Korean (2%)

8. Portuguese (2%)

9. Turkish (2%)

10. Vietnamese (2%)

11. Others (5%)

B.6 Age Groups (n = 126 users)

1. 18–20 (18%)

2. 21–25 (51%)

3. 26–30 (21%)

4. 31–35 (6%)

5. Over 35 (3%)

B.7 Gender (n = 126 users)

1. Female (34%)

2. Male (66%)


